Title of article :
Employing local modeling in machine learning based methods for time-series prediction
Author/Authors :
Wu، نويسنده , , Shin-Fu and Lee، نويسنده , , Shie-Jue Lee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Abstract :
Time series prediction has been widely used in a variety of applications in science, engineering, finance, etc. There are two different modeling options for constructing forecasting models in time series prediction. Global modeling constructs a model which is independent from user queries. On the contrary, local modeling constructs a local model for each different query from the user. In this paper, we propose a local modeling strategy and investigate the effectiveness of incorporating local modeling with three popular machine learning based forecasting methods, Neural Network (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Least Squares Support Vector Machine (LS-SVM), for time series prediction. Given a series of historical data, a local context of the user query is located and an appropriate number of lags are selected. Then forecasting models are constructed by applying NN, ANFIS, and LS-SVM, respectively. A number of experiments are conducted and the results show that local modeling can enhance the estimation performance of a forecasting method for time series prediction.
Keywords :
Time series prediction , Machine Learning , Local modeling , Nearest neighbors , mutual information
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications