Title of article :
An effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
Author/Authors :
Mahdavi-Amiri، Nezam نويسنده , , Yousefpour، Rohollah نويسنده Mazandaran University ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Pages :
28
From page :
171
To page :
198
Abstract :
We present an effective algorithm for minimization of locally nonconvex Lipschitz functions based on‎ ‎mollifier functions approximating the Clarke generalized gradient‎. ‎To this aim‎, ‎first we approximate the Clarke‎ ‎generalized gradient by mollifier subgradients‎. ‎To construct this‎ ‎approximation‎, ‎we use a set of averaged functions gradients‎. ‎Then‎, ‎we show that the convex hull of this set serves as a good‎ ‎approximation for the Clarke generalized gradient‎. ‎Using this‎ ‎approximation of the Clarke generalized gradient‎, ‎we establish an‎ ‎algorithm for minimization of locally Lipschitz functions‎. ‎Based‎ ‎on mollifier subgradient approximation‎, ‎we propose a dynamic‎ ‎algorithm for finding a direction satisfying the Armijo condition‎ ‎without needing many subgradient evaluations‎. ‎We prove that the‎ ‎search direction procedure terminates after finitely many‎ ‎iterations and show how to reduce the objective function value in‎ ‎the obtained search direction‎. ‎We also prove that the first order‎ ‎optimality conditions are satisfied for any accumulation point of‎ ‎the sequence constructed by the algorithm‎. ‎Finally‎, ‎we implement‎ ‎our algorithm with MATLAB codes and approximate averaged functions‎ ‎gradients by the Monte-Carlo method‎. ‎The numerical results show‎ ‎that our algorithm is effectively more efficient and also more‎ ‎robust than the GS algorithm‎, ‎currently perceived to be a‎ ‎competitive algorithm for minimization of nonconvex Lipschitz‎ ‎functions‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2011
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2359274
Link To Document :
بازگشت