Title of article :
Evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: Rivers draining north from the Pamir syntaxis
Author/Authors :
Brookfield، نويسنده , , M.E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
296
To page :
311
Abstract :
During uplift of the Tibetan plateau and surrounding ranges, tectonic processes have interacted with climatic change and with local random effects (such as landslides) to determine the development of the major river systems of Asia. Rivers draining northward from the Pamir syntaxis have three distinctive patterns that are controlled by different tectonic and climatic regimes. West of the Pamir, the rivers have moderate but irregular gradients and drain northwards to disappear into arid depressions. Relatively steady uplift of the Hindu Kush in northern Afghanistan allowed rivers to cut across the rising ranges, modified by the shear along the Harirud fault zone, local faulting, and by increasing rain-shadow effects from the rising Makran. In the transition to the Pamir the rivers have steeper but more even gradients suggesting more even flow and downcutting during uplift, possibly related to larger glacial sources. In the central Pamir, only one antecedent river, the Pyandzh appears to have kept its northward course with compression and uplift of the indenter, and its course strangely corresponds with a major geophysical boundary (a distorted subducted slab) but not a geological boundary: the other rivers are subsequent rivers developed along deformation fronts during development and northward displacements of the Pamir structural units. The above areas have sources north of the Cretaceous Karakorum–South Pamir Andean margin. On the eastern flank of the Pamir, in the Kunlun and northern Tibetan plateau, the rivers rise similarly north of the Cretaceous Andean margin of southern Tibet, but then flow with low gradients across the plateau, before cutting and plunging steeply down across the Kunlun to disappear into the arid Tarim. These steep profiles are the result of late Neogene uplift of the northern Tibetan plateau and Kunlun possibly modified by glacial diversion and river capture. The drainage history of the Pamir indenter can be reconstructed by restoring the gross movements of the plates and the tectonic displacements, uplift, and erosion of individual tectonic units. Most important changes in drainage took place in the last 10 million years, late Miocene to Quaternary times, as the Pamir syntaxis developed.
Keywords :
Evolution , ASIA , Pamir , Rivers
Journal title :
Geomorphology
Serial Year :
2008
Journal title :
Geomorphology
Record number :
2359639
Link To Document :
بازگشت