Title of article :
Classification and mapping of anthropogenic landforms on cultivated hillslopes using DEMs and soil thickness data — Example from the SW Parisian Basin, France
Author/Authors :
Chartin، نويسنده , , C. and Bourennane، نويسنده , , H. and Salvador-Blanes، نويسنده , , S. and Hinschberger، نويسنده , , F. and Macaire، نويسنده , , J.-J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
8
To page :
20
Abstract :
This study focuses on linear anthropogenic landforms of decametric width on cultivated hillslopes and their relations to soil thickness variability. The 16 ha study area shows a rolling topography supported by Cretaceous chalk of the SW Parisian Basin, France. Two types of landforms were identified: lynchets, similar to those described as soil terraces occurring on downslope field parts in other contexts, and undulations, linear, convex landforms that cut across fields. Accurate DEM construction and a detailed soil thickness survey were performed all over the study area. Soil samples were classified considering their location on specific types of anthropogenic landforms. The Classification Tree (CT) method was applied to assess whether lynchets and undulations can be discriminated through morphometric attributes (slope, curvature, profile curvature and planform curvature) and soil thickness (CTsoil) or through morphometric attributes only (CTtopo). The CT application establishes predictive classification models to map the spatial distribution of lynchets and undulations over the whole study area. The validation results of the CTsoil and CTtopo applications show model efficiencies of 83% and 67%, respectively. Both models performed well for lynchets. Errors arise mainly from difficulties in unequivocally discriminating gently convex undulations and undifferentiated surfaces, especially when soil thickness is not accounted for. Mean values of soil thickness are 1.08, 0.62 and 0.45 m in lynchets, undulations and undifferentiated areas, respectively. The general shape of the thickened soil is characteristic to each type of anthropogenic landform. Multi-temporal mapping of field border networks shows that undulations are linked to borders that were removed during the latest land consolidation. Lynchets are associated with current field borders. Lynchets and undulations, which cover 39% of the study area, define topographic indicators of human-induced soil accumulations. The method involves perspectives for efficiently mapping and quantifying the anthropogenically modified spatial variability of soil thickness on agricultural hillsides.
Keywords :
Digital elevation model , Soil thickness , Morphometric attributes , Lynchet , Field borders , classification tree
Journal title :
Geomorphology
Serial Year :
2011
Journal title :
Geomorphology
Record number :
2361450
Link To Document :
بازگشت