Title of article :
The Early Palaeozoic Break-up of Northern Gondwana: Sedimentology, Physical Volcanology and Geochemistry of a Submarine Volcanic Complex in the Bavarian Facies Association, Saxothuringian Basin, Germany
Author/Authors :
Martin، نويسنده , , U. and Reischmann، نويسنده , , Th. and Bahlburg، نويسنده , , H. and Schنtz، نويسنده , , M. and Tait، نويسنده , , J. and Bachtadse، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Ordovician volcano-sedimentary successions of the Bavarian facies association in the Saxothuringian basin record the continental rift phase of the separation of the Saxothuringian Terrane from Gondwana. An 80 m succession from the Vogtendorf beds and Randschiefer Series (Arenig-Middle Ordovician), exposed along the northern margin of the Münchberg Gneiss Massif in northeast Bavaria, were subjected to a study of their sedimentology, physical volcanology and geochemistry. The Randschiefer series previously has been interpreted as lavas, tuffs, sandstones and turbidites, but the studied Ordovician units include four main lithological associations: mature sandstones and slates, pillowed alkali-basalts and derivative mass flow deposits, trachyandesitic lavas and submarine pyroclastic flow deposits interbedded with turbidites. Eight lithofacies have been distinguished based on relict sedimentary structures and textures, which indicate deposition on a continental shelf below wave base. The explosive phase that generated the pyroclastic succession was associated with the intrusion of dykes and sills, and was succeeded by the eruption of pillowed basalts. Debris flow deposits overlie the basalts. Ordovician volcanism in this region, therefore, alternated between effusive and explosive phases of submarine intermediate to mafic volcanism.
on geochemical data, the volcanic and pyroclastic rocks are classified as basalts and trachyandesites. According to their geochemical characteristics, especially to their variable concentrations of incompatible elements such as the High Field Strength Elements (HFSE), they can be divided into three groups. Group I, which is formed by massive lavas at the base of the succession, has extraordinarily high contents of HFSE. The magmas of this group were probably derived from a mantle source in the garnet stability field by low (ca. 1%) degrees of partial melting and subsequent fractionation. Group II, which comprises the pillow lavas at the top of the sequence, displays moderate enrichment of HFSE. This can be explained by a slightly higher degree of melting (ca. 1.6%) for the primary magma. Group I and II melts fractionated from their parental magmas in different magma chambers. The eruption centres of Groups I and II, therefore, cannot be the same, and the volcanic rocks must have originated from different vents. The sills and pyroclastic flow deposits of Group III stem at least partly from the same source as Group I. Rocks of Group I most likely mixed together with Group II components during the formation of the Group III flows, which became hybridised during eruption, transportation and emplacement.
dimentological and geochemical data best support a rift as the tectonic setting of this volcanism, analogous to modern continental rift zones. Hence, the rift-associated volcanic activity preserved in the Vogtendorf beds and Randschiefer Series represents an early Ordovician stage of rift volcanism when the separation of the Saxothuringian Terrane from Gondwana had just commenced.
Keywords :
Density currents , Kupferberg , Variscan , subaqueous pyroclastic flow , Paleozoic
Journal title :
Gondwana Research
Journal title :
Gondwana Research