Title of article :
Heat flow, lenticulae spacing, and possibility of convection in the ice shell of europa
Author/Authors :
Ruiz، نويسنده , , Javier and Tejero، نويسنده , , Rosa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
12
From page :
362
To page :
373
Abstract :
Two opposing models to explain the geological features observed on Europa’s surface have been proposed. The thin-shell model states that the ice shell is only a few kilometers thick, transfers heat by conduction only, and can become locally thinner until it exposes an underlying ocean on the satellite’s surface. According to the thick-shell model, the ice shell may be several tens of kilometers thick and have a lower convective layer, above which there is a cold stagnant lid that dissipates heat by conduction. Whichever the case, from magnetic data there is strong support for the presence of a layer of salty liquid water under the ice. The present study was performed to examine whether the possibility of convection is theoretically consistent with surface heat flows of ∼100–200 mW m−2, deduced from a thin brittle lithosphere, and with the typical spacing of 15–23 km proposed for the features usually known as lenticulae. It was obtained that under Europa’s ice shell conditions convection could occur and also account for high heat flows due to tidal heating of the convective (nearly isothermal) interior, but only if the dominant water ice rheology is superplastic flow (with activation energy of 49 kJ mol−1; this is the rheology thought dominant in the warm interior of the ice shell). In this case the ice shell would be ∼15–50 km thick. Furthermore, in this scenario explaining the origin of the lenticulae related to convective processes requires ice grain size close to 1 mm and ice thickness around 15–20 km.
Keywords :
Europa , solid body , Satellites of Jupiter , Thermal histories , tides
Journal title :
Icarus
Serial Year :
2003
Journal title :
Icarus
Record number :
2372394
Link To Document :
بازگشت