Title of article :
Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate
Author/Authors :
Khoshkhoo، نويسنده , , Mohammad and Dopson، نويسنده , , Mark and Shchukarev، نويسنده , , Andrey and Sandstrِm، نويسنده , , إke، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
7
To page :
14
Abstract :
The majority of the worldʹs copper reserves are bound in the sulphide mineral chalcopyrite (CuFeS2), but supply of the copper is hindered by the recalcitrance of chalcopyrite to (bio)leaching. The main reason for the slow rate of chalcopyrite dissolution is the formation of a layer on the surface of the mineral that hinders dissolution, termed “passivation”. The nature of this layer and the role of microorganisms in chalcopyrite leaching behaviour are still under debate. Moderately thermophilic bioleaching of a pyritic chalcopyrite concentrate was mimicked in an electrochemical vessel to investigate the effect of the absence and presence of microorganisms in copper dissolution efficiency. Data from the redox potential development during bioleaching was used to program a redox potential controller in an electrochemical vessel to accurately reproduce the same leaching conditions in the absence of microorganisms. Two electrochemical experiments were carried out with slightly different methods of redox potential control. Despite massive precipitation of iron as jarosite in one of the electrochemically controlled experiments and formation of elemental sulphur in both electrochemical experiments, the efficiencies of copper dissolution were similar in the electrochemical tests as well as in the bioleaching experiment. No passivation was observed and copper recoveries exhibited a linear behaviour versus the leaching time possibly due to the galvanic effect between chalcopyrite and pyrite. The data suggest that the main role of microorganisms in bioleaching of a pyritic chalcopyrite concentrate was regeneration of ferric iron. It was also shown that the X-ray photoelectron spectroscopy measurements on the residues containing bulk precipitates cannot be employed for a successful surface characterisation.
Keywords :
Chalcopyrite , Bioleaching , Electrochemical cell , Redox potential , XPS
Journal title :
HYDROMETALLURGY
Serial Year :
2014
Journal title :
HYDROMETALLURGY
Record number :
2373496
Link To Document :
بازگشت