Title of article :
Spectral comparison of heavily hydrated salts with disrupted terrains on Europa
Author/Authors :
Dalton، نويسنده , , J.B. and Prieto-Ballesteros، نويسنده , , O. and Kargel، نويسنده , , J.S. and Jamieson، نويسنده , , C.S. and Jolivet، نويسنده , , J. and Quinn، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Hydrated magnesium sulfate salts have been proposed as major components of the disrupted, reddish terrains on the surface of Europa. This is based on near-infrared reflectance spectra which contain distorted and asymmetric water absorption features typical of moderately hydrated materials such as hexahydrite (MgSO4⋅6H2O) and epsomite (MgSO4⋅7H2O). Hydrated magnesium sulfates having many waters of hydration could produce improved spectral matches. Here we present cryogenic laboratory spectra of highly hydrated sulfur-bearing salts, including hexahydrite, epsomite, bloedite (Na2Mg(SO4)2⋅4H2O), mirabilite (Na2SO4⋅10H2O), sodium sulfide nonahydrate (Na2S⋅9H2O), supersaturated MgSO4, NaHCO3, and Na2SO4 brines, and magnesium sulfate dodecahydrate (MgSO4⋅12H2O). All have been measured under conditions of pressure and temperature appropriate to the surface environment of Europa. Novel methods for preparation, verification and analysis of MgSO4⋅12H2O, which is not stable at standard temperature and pressure (STP), are described. At 100 K, all of these materials exhibit distorted and asymmetric absorption features similar to those in the Europa observations, as well as several weaker, narrow absorptions having widths ranging from 15 to 80 nm. While the agreement with Galileo NIMS observations of dark terrains on Europa is indeed better for highly hydrated salts than for salts of lower hydration states, we conclude that none of these materials alone can account for all of the observed spectral character. As previously suggested, Europaʹs reddish material appears to be a complex mixture of sulfate hydrates and other materials.
Keywords :
experimental techniques , surfaces , Satellite , Europa , Spectroscopy