Title of article :
A systematic literature review of actionable alert identification techniques for automated static code analysis
Author/Authors :
Heckman، نويسنده , , Sarah and Williams، نويسنده , , Laurie، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Abstract :
Context
ted static analysis (ASA) identifies potential source code anomalies early in the software development lifecycle that could lead to field failures. Excessive alert generation and a large proportion of unimportant or incorrect alerts (unactionable alerts) may cause developers to reject the use of ASA. Techniques that identify anomalies important enough for developers to fix (actionable alerts) may increase the usefulness of ASA in practice.
ive
al of this work is to synthesize available research results to inform evidence-based selection of actionable alert identification techniques (AAIT).
nt studies about AAITs were gathered via a systematic literature review.
s
ected 21 peer-reviewed studies of AAITs. The techniques use alert type selection; contextual information; data fusion; graph theory; machine learning; mathematical and statistical models; or dynamic detection to classify and prioritize actionable alerts. All of the AAITs are evaluated via an example with a variety of evaluation metrics.
sion
lected studies support (with varying strength), the premise that the effective use of ASA is improved by supplementing ASA with an AAIT. Seven of the 21 selected studies reported the precision of the proposed AAITs. The two studies with the highest precision built models using the subject program’s history. Precision measures how well a technique identifies true actionable alerts out of all predicted actionable alerts. Precision does not measure the number of actionable alerts missed by an AAIT or how well an AAIT identifies unactionable alerts. Inconsistent use of evaluation metrics, subject programs, and ASAs in the selected studies preclude meta-analysis and prevent the current results from informing evidence-based selection of an AAIT. We propose building on an actionable alert identification benchmark for comparison and evaluation of AAIT from literature on a standard set of subjects and utilizing a common set of evaluation metrics.
Keywords :
Actionable alert identification , Systematic literature review , Warning prioritization , Automated static analysis , Unactionable alert mitigation , Actionable alert prediction
Journal title :
Information and Software Technology
Journal title :
Information and Software Technology