Title of article :
Dim moving target detection algorithm based on spatio-temporal classification sparse representation
Author/Authors :
Li، نويسنده , , Zhengzhou and Dai، نويسنده , , Zhen and Fu، نويسنده , , Hongxia and Hou، نويسنده , , Qian and Wang، نويسنده , , Zhen and Yang، نويسنده , , Lijiao and Jin، نويسنده , , Gang and Liu، نويسنده , , Changju and Li، نويسنده , , Ruzhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
A dim moving target detection algorithm based on spatio-temporal classification sparse representation, which can characterize the motion information and morphological feature of target and background clutter, is proposed to enhance the performance of target detection. A spatio-temporal redundant dictionary is trained according to the content of infrared image sequence, and then is subdivided into target spatio-temporal redundant dictionary describing moving target, and background spatio-temporal redundant dictionary embedding background by the criterion that the target spatio-temporal atom could be decomposed more sparsely over Gaussian spatio-temporal redundant dictionary. The target and background clutter can be sparsely decomposed over their corresponding spatio-temporal redundant dictionary, yet could not be sparsely decomposed on their opposite spatio-temporal redundant dictionary, and so their residuals after reconstruction by the prescribed number of target and background spatio-temporal atoms would differ very visibly. Some experimental results show this proposed approach could not only improve the sparsity more efficiently, but also enhance the target detection performance more effectively.
Keywords :
Signal sparse reconstruction , Background spatio-temporal redundant dictionary , Target spatio-temporal redundant dictionary , Spatio-temporal classification redundant dictionary , Dim target detection
Journal title :
Infrared Physics & Technology
Journal title :
Infrared Physics & Technology