Author/Authors :
Krasnopolsky، نويسنده , , Vladimir A.، نويسنده ,
Abstract :
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70–112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90–100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O–H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90–110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834–837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70–110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.
Keywords :
Atmosphere , Venus , photochemistry , atmospheres , Atmospheres , abundances , COMPOSITION , Venus