Title of article :
Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean
Author/Authors :
Robuchon، نويسنده , , Guillaume and Nimmo، نويسنده , , Francis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Determining whether or not Pluto possesses, or once possessed, a subsurface ocean is crucial to understanding its astrobiological potential. In this study we use a 3D convection model to investigate Pluto’s thermal and spin evolution, and the present-day observational consequences of different evolutionary pathways. We test the sensitivity of our model results to different initial temperature profiles, initial spin periods, silicate potassium concentrations and ice reference viscosities. The ice reference viscosity is the primary factor controlling whether or not an ocean develops and whether that ocean survives to the present day. In most of our models present-day Pluto consists of a convective ice shell without an ocean. However if the reference viscosity is higher than 5 × 1015 Pa s, the shell will be conductive and an ocean should be present. For the nominal potassium concentration the present-day ocean and conductive shell thickness are both about 165 km; in conductive cases an ocean will be present unless the potassium content of the silicate mantle is less than 10% of its nominal value. If Pluto never developed an ocean, predominantly extensional surface tectonics should result, and a fossil rotational bulge will be present. For the cases which possess, or once possessed, an ocean, no fossil bulge should exist. A present-day ocean implies that compressional surface stresses should dominate, perhaps with minor recent extension. An ocean that formed and then re-froze should result in a roughly equal balance between (older) compressional and (younger) extensional features. These predictions may be tested by the New Horizons mission.
Keywords :
Pluto , Thermal histories , Pluto , rotational dynamics , Surface