Title of article :
Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy
Author/Authors :
Schlerf، نويسنده , , Martin and Atzberger، نويسنده , , Clement and Hill، نويسنده , , Joachim and Buddenbaum، نويسنده , , Henning and Werner، نويسنده , , Willy and Schüler، نويسنده , , Gebhard، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.
Keywords :
imaging spectrometry , Spectroscopy , Hyperspectral , Spectral transformation , Chlorophyll , Norway spruce , Forest , Nitrogen
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Journal title :
International Journal of Applied Earth Observation and Geoinformation