Title of article :
Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis
Author/Authors :
Lanorte، نويسنده , , A. G. Danese، نويسنده , , M. and Lasaponara، نويسنده , , R. and Murgante، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
42
To page :
51
Abstract :
Traditional methods of recording fire burned areas and fire severity involve expensive and time-consuming field surveys. Available remote sensing technologies may allow us to develop standardized burn-severity maps for evaluating fire effects and addressing post fire management activities. This paper focuses on multiscale characterization of fire severity using multisensor satellite data. To this aim, both MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data have been processed using geo-statistic analyses to capture pattern features of burned areas. f in last decades different authors tried to integrate geo-statistics and remote sensing image processing, methods used since now are only variograms, semivariograms and kriging. In this paper, we propose an approach based on the use of spatial indicators of global and local autocorrelation. Spatial autocorrelation statistics, such as Moranʹs I and Getis–Ord Local Gi index, were used to measure and analyze dependency degree among spectral features of burned areas. This approach enables the characterization of pattern features of a burned area and improves the estimation of fire severity.
Keywords :
MODIS , ASTER , fire severity , Spatial autocorrelation statistics
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Serial Year :
2013
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Record number :
2379155
Link To Document :
بازگشت