Title of article :
Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor
Author/Authors :
Oumar، نويسنده , , Z. and Mutanga، نويسنده , , O. and Ismail، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage with an R2 value of 0.74 with the lowest RMSE of 1.30% on an independent test dataset. The best three indices identified include the anthocyanin reflectance index, carotenoid reflectance index and the normalized index calculated at 864.4 and 884.7 nm. Individual relationships between these indices and T. peregrinus damage indicate that high correlations are obtained with the inclusion of a few severely infested trees in the sample size. When the severely infested trees were removed from the study, the normalized index (864.4 and 884.7 nm) and the anthocyanin reflectance index still yielded significant correlations at the 99% confidence interval. This study indicates the significance of normalized indices and spectral indices calculated from the visible and near-infrared bands in hyperspectral data for the prediction of T. peregrinus damage.
Keywords :
Hyperspectral indices , Normalized indices , Thaumastocoris peregrinus , PLS regression
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Journal title :
International Journal of Applied Earth Observation and Geoinformation