Title of article :
Auto-compensation of nonlinear influence of environmental parameters on the sensor characteristics using neural networks
Author/Authors :
Patra، نويسنده , , Jagdish Chandra and Ang، نويسنده , , Ee Luang and Das، نويسنده , , Amitabha and Chaudhari، نويسنده , , Narendra Shivaji، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
165
To page :
176
Abstract :
Usually the environmental parameters influence the sensor characteristics in a nonlinear manner. Therefore obtaining correct readout from a sensor under varying environmental conditions is a complex problem. In this paper we propose a neural network (NN)-based interface framework to automatically compensate for the nonlinear influence of the environmental temperature and the nonlinear-response characteristics of a capacitive pressure sensor (CPS) to provide correct readout. With extensive simulation studies we have shown that the NN-based inverse model of the CPS can estimate the applied pressure with a maximum error of ± 1.0% for a wide temperature variation from 0 to 250°C. A microcontroller unit-based implementation scheme is also proposed.
Keywords :
smart sensor , Self-correction , Nonlinear dependencies
Journal title :
ISA TRANSACTIONS
Serial Year :
2005
Journal title :
ISA TRANSACTIONS
Record number :
2382674
Link To Document :
بازگشت