Title of article :
Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input
Author/Authors :
Liu، نويسنده , , Yanjun and Zhou، نويسنده , , Ning، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
462
To page :
469
Abstract :
Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper.
Keywords :
Unknown dead-zone , Fuzzy-neural control , Adaptive control , Output-feedback control
Journal title :
ISA TRANSACTIONS
Serial Year :
2010
Journal title :
ISA TRANSACTIONS
Record number :
2383049
Link To Document :
بازگشت