Title of article :
Tuning fuzzy PD and PI controllers using reinforcement learning
Author/Authors :
Boubertakh، نويسنده , , Hamid and Tadjine، نويسنده , , Mohamed and Glorennec، نويسنده , , Pierre-Yves and Labiod، نويسنده , , Salim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q -learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi–Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen’s implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples.
Keywords :
Fuzzy PID controllers , Classical PID controllers , Tuning Fuzzy PID controllers , Takagi–Sugeno fuzzy systems , reinforcement learning
Journal title :
ISA TRANSACTIONS
Journal title :
ISA TRANSACTIONS