Title of article :
Human activity recognition based on feature selection in smart home using back-propagation algorithm
Author/Authors :
Fang، نويسنده , , Hongqing and He، نويسنده , , Lei and Si، نويسنده , , Hao and Liu، نويسنده , , Peng and Xie، نويسنده , , Xiaolei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM.
Keywords :
Human activity recognition , pervasive computing , smart home , feature selection , Sensors and networks
Journal title :
ISA TRANSACTIONS
Journal title :
ISA TRANSACTIONS