Title of article :
On residuated lattices with universal quantifiers
Author/Authors :
kondo، Michiro نويسنده ‎Tokyo Denki University ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
7
From page :
923
To page :
929
Abstract :
We consider properties of residuated lattices with universal quantifier and show that‎, ‎for a residuated lattice $X$‎, ‎$(X‎, ‎\forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$‎. ‎We also show that‎, ‎for a strong residuated lattice $X$‎, ‎$\bigcap \{P_{\lambda}, P_{\lambda} is an m-‎filter ={1}$ and hence that any strong residuated lattice is a subdirect product of a strong residuated lattice with a universal quantifier $\{ X/P_{\lambda} \}$‎, ‎where $P_{\lambda}$ is a prime $m$-filter‎. ‎As a corollary of this result‎, ‎we prove that every strong monadic MTL-algebra (BL‎- ‎and MV-algebra) is a subdirect product of linearly ordered strong monadic MTL-algebras (BL‎- ‎and MV-algebras‎, ‎respectively)‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2384659
Link To Document :
بازگشت