Title of article :
Parabolic starlike mappings of the unit ball B^n
Author/Authors :
Rahrovi، Samira نويسنده Department of Mathematics, Faculty of Basic Science, University of Bonab, P.O. Box 5551-761167, Bonab, Iran. ,
Issue Information :
دوفصلنامه با شماره پیاپی 0 سال 2016
Pages :
8
From page :
63
To page :
70
Abstract :
Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^n\subseteq\mathbb{C}^n$ given by $$\Phi_{n,\gamma}(f)(z)=\left(f(z_1),\left(fʹ(z_1)\right)^\gamma\hat{z}\right),$$ where $\gamma\in[0,1/2]$, $z=(z_1,\hat{z})\in B^n$ and $$\Psi_{n,\beta}(f)(z)=\left(f(z_1),\left(\frac{f(z_1)}{z_1}\right)^\beta\hat{z}\right),$$ in which $\beta\in[0,1]$, $f(z_1)\neq 0$ and $z=(z_1,\hat{z})\in B^n$. In the case $\gamma=1/2$, the function $\Phi_{n,\gamma}(f)$ reduces to the well known Roper-Suffridge extension operator. By using different methods, we prove that if $f$ is parabolic starlike mapping on $U$ then $\Phi_{n,\gamma}(f)$ and $\Psi_{n,\beta}(f)$ are parabolic starlike mappings on $B^n$.
Journal title :
Sahand Communications in Mathematical Analysis
Serial Year :
2016
Journal title :
Sahand Communications in Mathematical Analysis
Record number :
2385525
Link To Document :
بازگشت