Title of article :
Locally GCD domains and the ring $D+XD_S[X]$
Author/Authors :
Chang، Gyu Whan نويسنده Incheon National University‎ , , Dumitrescu، Tiberiu نويسنده ‎University of‎ ‎Bucharest , , Zafrullah، Muhammad نويسنده ‎Idaho State University ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2016
Pages :
22
From page :
263
To page :
284
Abstract :
‎An integral domain $D$ is called a \emph{locally GCD domain} if $D_{M}$ is a‎ ‎GCD domain for every maximal ideal $M$ of $D$‎. ‎We study some‎ ‎ring-theoretic properties of locally GCD domains‎. ‎For example‎, ‎we show that $%‎ ‎D$ is a locally GCD domain if and only if $aD\cap bD$ is locally principal‎ ‎for all $0\neq a,b\in D$‎, ‎and flat overrings of a locally GCD domain are‎ ‎locally GCD‎. ‎We also show that the t-class group of a locally GCD domain is‎ ‎just its Picard group‎. ‎We study when a locally GCD domain is Pr\"{u}fer or a‎ ‎generalized GCD domain‎. ‎We also characterize locally factorial domains as domains $D$ whose minimal prime ideals‎ ‎of a nonzero principal ideal are locally principal and discuss conditions that make them Krull domains‎. ‎We use the \small{$D+XD_{S}[X]$} construction to give some‎ ‎interesting examples of locally GCD domains that are not GCD domains‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2388592
Link To Document :
بازگشت