Title of article :
A generalization of $\oplus$-cofinitely supplemented modules
Author/Authors :
Kosar، Berna نويسنده Ondokuz May‎i‎s University , , Turkmen، Burcu نويسنده Amasya University‎ ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2016
Pages :
9
From page :
91
To page :
99
Abstract :
‎We say that a module $M$ is a \emph{cms-module} if‎, ‎for every cofinite submodule $N$ of $M$‎, ‎there exist submodules $K$ and $K^{ʹ}$ of $M$ such that $K$ is a supplement of $N$‎, ‎and $K$‎, ‎$K^{ʹ}$ are mutual supplements in $M$‎. ‎In this article‎, ‎the various properties of cms-modules are given as a generalization of $\oplus$-cofinitely supplemented modules‎. ‎In particular‎, ‎we prove that a $\pi$-projective module $M$ is a cms-module if and only if $M$ is $\oplus$-cofinitely supplemented‎. ‎Finally‎, ‎we show that every free $R$-module is a cms-module if and only if $R$ is semiperfect.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2016
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2388857
Link To Document :
بازگشت