Title of article :
On Nilpotent Elements of Skew Polynomial Rings
Author/Authors :
اسماعيلي، جواد 1333 نويسنده علوم پايه Esmaili, J , هاشمي، ابراهيم نويسنده دانشکده کشاورزي-دانشگاه صنعتي اصفهان Hashemi, S.E.
Issue Information :
فصلنامه با شماره پیاپی 14 سال 2012
Abstract :
We study the structure of the set of nilpotent elements
in skew polynomial ring R[x; ], when R is an -Armendariz ring. We
prove that if R is a nil -Armendariz ring and t = IR, then the set
of nilpotent elements of R is an -compatible subrng of R. Also, it
is shown that if R is an -Armendariz ring and t = IR, then R is
nil -Armendariz. We give some examples of non -Armendariz rings
which are nil -Armendariz. Moreover, we show that if t = IR for some
positive integer t and R is a nil -Armendariz ring and nil(R[x][y; ]) =
nil(R[x])[y], then R[x] is nil -Armendariz. Some results of [3] follow
as consequences of our results.
Journal title :
Journal of Mathematical Extension(IJME)
Journal title :
Journal of Mathematical Extension(IJME)