Title of article :
Additivity of maps preserving Jordan $\eta_{\ast}$-products on‎ ‎$C^{*}$-algebras
Author/Authors :
Taghavi، Ali نويسنده Department of Mathematics‎, ‎Faculty of Mathematical‎ ‎Sciences‎, ‎University of Mazandaran‎ , , Rohi، Hamid نويسنده Department of Mathematics‎, ‎Faculty of Mathematical‎ ‎Sciences‎, ‎University of Mazandaran‎ , , Darvish، Vahid نويسنده Department of Mathematics‎, ‎Faculty of Mathematical‎ ‎Sciences‎, ‎University of Mazandaran‎ ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
10
From page :
107
To page :
116
Abstract :
‎Let $\mathcal{A}$ and $\mathcal{B}$ be two $C^{*}$-algebras such‎ ‎that $\mathcal{B}$ is prime‎. ‎In this paper‎, ‎we investigate the‎ ‎additivity of maps $\Phi$ from $\mathcal{A}$ onto $\mathcal{B}$ that‎ ‎are bijective‎, ‎unital and < that > satisfy $\Phi(AP+\eta PA^{*})=\Phi(A)\Phi(P)+\eta \Phi(P)\Phi(A)^{*},$‎ ‎for all $A\in\mathcal{A}$ and $P\in\{P_{1},I_{\mathcal{A}}-P_{1}\}$‎ ‎where $P_{1}$ is a nontrivial projection in $\mathcal{A}$‎. ‎If‎ ‎$\eta$ is a non-zero complex number such that $|\eta|\neq1$‎, ‎then‎ ‎$\Phi$ is additive‎. ‎Moreover‎, ‎if $\eta$ is rational < , > then $\Phi$ is‎ ‎$\ast$-additive.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2388994
Link To Document :
بازگشت