Title of article :
The witness set of coexistence of quantum effects and its preservers
Author/Authors :
He، Kan نويسنده College of Mathematics‎, ‎Institute of Mathematics‎, ‎Taiyuan University of Technology‎ , , Sun، Fan نويسنده , , Hou، Jinchuan نويسنده , , Yuan، Qing نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
10
From page :
195
To page :
204
Abstract :
‎One of unsolved problems in quantum‎ ‎measurement theory is to characterize coexistence of quantum effects‎. ‎In < this > paper‎, ‎applying positive operator matrix theory‎, ‎we give a mathematical characterization of the witness set of coexistence of‎ ‎quantum effects and obtain a series of properties of coexistence‎. ‎ < We also devote to characterizing bijective morphisms on quantum effects leaving the witness set invariant. > Furthermore‎, ‎applying‎ ‎linear maps preserving commutativity‎, ‎which are characterized by Choi‎, ‎Jafarian and Radjavi [Linear maps preserving commutativity‎, ‎Linear Algebra Appl‎. ‎87 (1987)‎, ‎227--241.]‎, ‎we classify multiplicative general morphisms leaving the witness set invariant on finite dimensional.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2389001
Link To Document :
بازگشت