Title of article :
Strongly clean triangular matrix rings with endomorphisms
Author/Authors :
Chen، H. نويسنده , , Kose، H. نويسنده Department of Mathematics, Ahi Evran University , , Kurtulmaz، Y. نويسنده Department of Mathematics, Bilkent University ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Abstract :
A ring $R$ is strongly clean provided that every element
in $R$ is the sum of an idempotent and a unit that commutate. Let
$T_n(R,\sigma)$ be the skew triangular matrix ring over a local
ring $R$ where $\sigma$ is an endomorphism of $R$. We show that
$T_2(R,\sigma)$ is strongly clean if and only if for any $a\in
1+J(R), b\in J(R)$, $l_a-r_{\sigma(b)}: R\to R$ is surjective.
Further, $T_3(R,\sigma)$ is strongly clean if
$l_{a}-r_{\sigma(b)}, l_{a}-r_{\sigma^2(b)}$ and
$l_{b}-r_{\sigma(a)}$ are surjective for any $a\in U(R),b\in
J(R)$. The necessary condition for $T_3(R,\sigma)$ to be strongly
clean is also obtained.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society