Title of article :
New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
Author/Authors :
Liao، Fangfang نويسنده School of Mathematics and Statistics Central South University Changsha , , Tang، X‎. ‎H‎. ‎ نويسنده School of Mathematics and Statistics Central South University Changsha‎ , , Qin، Dong Dong نويسنده School of Mathematics and Statistics Central South University Changsha ,
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2015
Pages :
16
From page :
1131
To page :
1146
Abstract :
‎This paper is concerned with the following elliptic system‎: ‎$$‎ ‎\left\{‎ ‎\begin{array}{ll}‎ -‎\triangle u‎ + ‎b(x)\nabla u‎ + ‎V(x)u=g(x‎, ‎v)‎, ‎\\‎ -‎\triangle v‎ - ‎b(x)\nabla v‎ + ‎V(x)v=f(x‎, ‎u)‎, ‎\\‎ ‎\end{array}‎ ‎\right‎. ‎$$‎ ‎for $x \in {\mathbb{R}}^{N}$‎, ‎where $V $‎, ‎$b$ and $W$ are 1-periodic in $x$‎, ‎and $f(x,t)$‎, ‎$g(x,t)$ are Superlinear‎. ‎In this paper‎, ‎we give a new technique to show the boundedness of Cerami sequences and establish the existence of ground state solutions with mild assumptions on $f$ and $g$.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2015
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2389248
Link To Document :
بازگشت