Title of article :
Fixed point theorem for non-self mappings and its applications in the modular space
Author/Authors :
Moradi، R. نويسنده Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, Iran , , RAZANI، A. نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2016
Abstract :
در اين مقاله، بر اساس مقاله
[A.Razani, V.Rakocevic and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point
theorems, Cent. Eur. J. Math. 2 (2010) 357-366.]
قضيه نقطه ثابت اي براي غيرخود نگاشت Tدر فضاي مدلار X?ارايه شده است. بعلاوه، شكل جديدي از قضيه نقطه ثابت
Krasnoseleskiiiبراي نگاشت S+Tكه در آن Tيكغيرخود نگاشت انقباضي پيوسته و Sنگاشت پيوسته به قسمي است كه
) S(Cدر يك زير مجموعه فشرده X?قرار دارد، كه در آن Cزير مجموعه غيرتھي كامل و بي كران از X?مي باشد. نتايج
حاضر، نتايج ارايه شده توسط Hajji and Haneballyدر مقاله
[A.Hajji and E. Hanebally, Fixed point theorem and its application to perturbed integral equations in
modular function spaces, Electron. J. Differ. Equ. 2005 (2005) 1-11]
را بھبود و تعمبم مي دھد. بعنوان يك كاربرد، وجود جواب يك معادله انتگرال غير خطي روي ) C(I,L?ارايه شده است،
كه در آن ) C(I,L?نشان دھنده فضاي ھمه توابع پيوسته از Iبه L? ،L?فضاي Musielak-Orliczو .I=[0,b] ?R
بعلاوه، مفھوم غيرخود نگاشت شبه انقباضي در فضاي مدولار معرفي مي شود. سپس وجود يك نقطه ثابت براي اين گونه
نگاشت بدون شرط ?2ثابت مي شود. در پايان، يك دنباله سه مرحله اي تكرار شونده براي يك غيرخود نگاشت معرفي
شده و ھمگرايي قوي اين دنباله تكرار شونده مطالعه مي شود. قضيه ارايه شده، نتايج موجود را، بھبود و تعميم مي دھد
Abstract :
In this paper, based on [A. Razani, V. Rako$\check{c}$evi$\acute{c}$ and Z. Goodarzi, Nonself
mappings in modular spaces and common fixed point theorems, Cent.
Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self
contraction mapping $T$ in the modular space $X_\rho$ is presented.
Moreover, we study a new version of Krasnoseleskiiʹs fixed point
theorem for $S+T$, where $T$ is a continuous non-self contraction
mapping and $S$ is continuous mapping such that $S(C)$ resides
in a compact subset of $X_\rho$, where $C$ is a nonempty and
complete subset of $X_\rho$, also $C$ is not bounded. Our result
extends and improves the result announced by Hajji and Hanebally [A.
Hajji and E. Hanebaly, Fixed point theorem and its application to
perturbed integral equations in modular function spaces,
Electron. J. Differ. Equ. 2005 (2005) 1-11]. As an application,
the existence of a solution of a nonlinear
integral equation on $C(I, L^\varphi) $ is presented, where $C(I,
L^\varphi)$ denotes the space of all continuous function from $I$
to $L^\varphi$,
$L^\varphi$ is the Musielak-Orlicz space and $I=[0,b]
\subset \mathbb{R}$.
In addition, the concept of quasi contraction non-self mapping in
modular space is introduced. Then the existence of a fixed point of these kinds
of mapping without $\Delta_2$-condition is proved.
Finally, a three step iterative sequence for non-self
mapping is introduced and the strong convergence of this iterative sequence is studied.
Our theorem improves and generalized recent know
results in the literature.
Journal title :
International Journal of Industrial Mathematics(IJIM)
Journal title :
International Journal of Industrial Mathematics(IJIM)