Title of article :
Clifford-Fischer theory applied to a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$
Author/Authors :
-، - نويسنده School of Mathematical Sciences, ‎North-West University ‎(Mafikeng)‎, ‎P Bag X2046‎, ‎Mmabatho 2735‎, ‎South Africa. Basheer, A. B. M. , -، - نويسنده School of Mathematical ‎Sciences, ‎North-West University ‎(Mafi-keng)‎, ‎P Bag X2046‎, ‎Mmabatho 2735‎, ‎South Africa. Moori, J.
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2017
Pages :
12
From page :
41
To page :
52
Abstract :
-
Abstract :
‎In our paper [A‎. ‎B‎. ‎M‎. ‎Basheer and J‎. ‎Moori‎, ‎On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors‎, ‎Fischer matrices and the ordinary character table of the split‎ ‎extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer‎ ‎Theory‎. ‎The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$‎ ‎is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2).$ The‎ ‎purpose of this paper is the determination of the conjugacy classes‎ ‎of $overline{G}$ using the coset analysis method‎, ‎the determination‎ ‎of the inertia factors‎, ‎the computations of the Fischer matrices and‎ ‎the ordinary character table of the split extension $overline{G}=‎‎2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$ by means of Clifford-Fischer‎ ‎Theory‎. ‎Through various theoretical and computational aspects we‎ ‎were able to determine the structures of the inertia factor groups‎. ‎These are the groups $H_{1} = H_{2} = (3^{1+2}{:}8){:}2, $ $H_{3} =‎‎QD_{16}$ and $H_{4} = D_{12}.$ The Fischer matrices‎ ‎$mathcal{F}_{i}$ of $overline{G},$ which are complex valued‎ ‎matrices‎, ‎are all listed in this paper and their sizes range between‎ ‎2 and 5‎. ‎The full character table of $overline{G},$ which is $41‎ ‎times 41$ complex valued matrix‎, ‎is available in the PhD thesis of‎ ‎the first author‎, ‎which could be accessed online‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2400321
Link To Document :
بازگشت