Title of article :
A Novel Cost Sensitive Imbalanced Classification Method based on New Hybrid Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
Author/Authors :
Mahdizadeh, M Department of Computer Engineering - Shahid Bahonar University of Kerman, Kerman, Iran , Eftekhari, M Department of Computer Engineering - Shahid Bahonar University of Kerman, Kerman, Iran
Pages :
9
From page :
1160
To page :
1168
Abstract :
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This hybrid algorithm finds difficult minority instances; then, their misclassification cost will be calculated using the proposed cost measure. Also, to improve classification performance, the lateral tuning of membership functions (in data base) is employed by means of a genetic algorithm. The performance of the proposed method is compared with some cost-sensitive classification approaches taken from the literature. Experiments are performed over 22 highly imbalanced datasets from KEEL dataset repository; the classification results are evaluated using the Area Under the Curve (AUC) as a performance measure. Some statistical non-parametric tests are used to compare the classification performance of different methods in different datasets. Results reveal that our hybrid cost-sensitive fuzzy rule-based classifier outperforms other methods in terms of classification accuracy.
Farsi abstract :
در اين مقاله، روش تركيبي جديدي براي طراحي يك سيستم مبتني برقانون حساس به هزينه و نيز معيار هزينه ي جديدي براساس تركيب سه مفهوم انتروپي، Gini index و DKM پيشنهاد شده است. به منظور محاسبه هزينه موثر الگوها، از تركيب خوشه بندي FCM و PSO استفاده شده است. اين الگوريتم نمونه هاي دشوار را شناسايي كرده و هزينه ي طبقه بندي اشتباه آن ها را با استفاده از معيار پيشنهادي محاسبه مي كند. همچنين براي بهبود كارايي طبقه بندي از ميزان سازي جانبي توابع عضويت با بكارگيري الگوريتم ژنتيك استفاده مي شود و در نهايت كارايي روش پيشنهادي با چندين الگوريتم حساس به هزينه ديگر مقايسه شده است. آزمايش بر روي 37 مجموعه داده از KEEL اعمال و معيار AUC براي ارزيابي نتايج بكار گرفته شده است. نتايج نشان مي دهد كه روش پيشنهادي نسبت به ديگر روش هاي مورد مقايسه از عملكرد بهتري برخوردار مي باشد.
Keywords :
cost sensitive learning , fuzzy rule-based classification systems , evolutionary algorithms , lateral tuning , fuzzy clustering
Journal title :
Astroparticle Physics
Serial Year :
2015
Record number :
2406993
Link To Document :
بازگشت