Title of article :
Hierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
Author/Authors :
Mohammadi, M School of Industrial Engineering and Research Institute of Energy Management & Planning - College of Engineering - University of Tehran, Tehran, Iran , Iranmanesh, S. H School of Industrial Engineering and Research Institute of Energy Management & Planning - College of Engineering - University of Tehran, Tehran, Iran , Tavakkoli-Moghaddam, R School of Industrial Engineering and Research Institute of Energy Management & Planning - College of Engineering - University of Tehran, Tehran, Iran , Abdollahzadeh, M Department of Mechanical Engineering - University of K.N. Toosi, Tehran, Iran
Pages :
10
From page :
1405
To page :
1414
Abstract :
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a number of different domain problems. This paper considers a hierarchical model by combining three data mining techniques containing two different fuzzy prediction networks and a regression technique for churn prediction, namely Alpha-cut Fuzzy C-Means (αFCM), Improved Fuzzy ARTMAP and Cox proportional hazards regression model, respectively. In particular, the first component of the hybrid model aims to cluster data in two churner and non-churner groups applying the alpha-cut algorithm and filter out unrepresentative data or outliers. Then, the clustered and representative data as the outputs are used to assign customers to churner and non-churner groups by the second technique. Finally, the correctly classified data are used to create the Cox proportional hazards model. To evaluate the performance of the proposed hierarchical model, the Iranian mobile dataset is considered. The experimental results show that the proposed model outperforms the single Cox regression baseline model in terms of prediction accuracy, Type I and II errors, RMSE and MAD metrics.
Farsi abstract :
از آنجايي كه مشتريان هر سازمان جزء ارزشمندترين دارايي ­هاي آن سازمان محسوب مي­ شود، بنابراين مديريت ريزش مشتريان به يكي از وظايف اصلي سازمان ­ها براي جلوگيري از ريزش مشتريانشان تبديل شده است. از طرف ديگر، كاربردپذيري و عملكرد بالاي روش­ هاي داده كاوي سلسله مراتبي در ادبيات موضوع به اثبات رسيده است. در اين مقاله از يك روش سلسله مراتبي شامل سه روش متفاوت αFCM، Fuzzy ARTMAP و رگرسيون كاكس (Cox regression) استفاده شده است به گونه ­اي كه روش اول به منظور خوشه ­بندي داده ­هاي اوليه به دو دسته ريزش ­يافته و ريزش ­نيافته است. روش دوم مشتريان مختلف را به اين دو كلاس طبقه بندي مي­ كند و در نهايت تابع بقا و ريزش مشتريان بدست مي ­آيد. جهت اعتبار­سنجي روش سلسله مراتبي پيشنهادي از داده ­هاي يكي از اپراتورهاي تلفن همراه ايران استفاده شده است و نتايج حاصل از منظر دقت پيش ­بيني، خطاهاي نوع اول و دوم، ريشه ميانگين مربعات خطا (RMSE) و مقدار مطلق خطا با روش پايه­ اي رگرسيون كاكس مقايسه شده­ اند.
Keywords :
Fuzzy ARTMAP , Fuzzy C-Means , Cox Regression , Customer Relationship management , Churn Prediction
Journal title :
Astroparticle Physics
Serial Year :
2014
Record number :
2407300
Link To Document :
بازگشت