Author/Authors :
اريف رضا موهاد نويسنده Aligarh Muslim University Arif Raza Mohd , يوررحمان نادم نويسنده Faculty of Scince Taibah University ur Rehman Nadeem , بانو ترانم نويسنده Aligarh Muslim University Bano Tarannum
Abstract :
Let R be a prime ring with characteristic different from two,
I be a nonzero ideal of R, and F be a generalized derivation associated
with a nonzero derivation d of R. In the present paper we investigate
the commutativity of R satisfying the relation F([x, y]k)n = ([x, y]k)l
for all x, y 2 I, where l, n, k are fixed positive integers. Moreover, let R
be a semiprime ring, A = O(R) be an orthogonal completion of R, and
B = B(C) be the Boolean ring of C. Suppose F([x, y]k)n = ([x, y]k)l for
all x, y 2 R, then there exists a central idempotent element e of B such
that d vanishes identically on eA and the ring (1?e)A is commutative