Title of article :
Artificial neural networks, genetic algorithm and response surface methods: The energy consumption of food and beverage industries in Iran
Author/Authors :
Hosseinzadeh Samani B. نويسنده Dept. of Mechanics of Biosystems Engineering, Faculty of Agriculture, Shahrekored University, Shahrekord, Iran. , Houri Jafari H. نويسنده International Institute of Energy Studies, Tehran, Iran. , Zareiforoush H. نويسنده Dept. of Mechanization Engineering, Faculty of Agricultural Sciences, University of Guilan, , Rasht, Iran.
Pages :
10
From page :
79
Abstract :
The energy consumption in food and beverage industries in Iran was investigated. The energy consumption in this sector was modeled using artificial neural network (ANN), response surface methodology (RSM) and genetic algorithm (GA). First, the input data to the model were calculated according to the statistical source, balance-sheets and the method proposed in this paper. It can be seen that diesel and liquefied petroleum gas have respectively the highest and lowest shares of energy consumption compared with the other types of carriers. For each of the evaluated energy carriers (diesel, kerosene, fuel oil, natural gas, electricity, liquefied petroleum gas and gasoline), the best fitting model was selected after taking the average of runs of the developed models. At last, the developed models, representing the energy consumption of food and beverage industries by each energy carrier, were put into a finalized model using Simulink toolbox of Matlab software. The results indicated that consumption of natural gas is being increased in Iranian food and beverage industries, while in the case of fuel oil and liquefied petroleum gas a decreasing trend was estimated.
Journal title :
Astroparticle Physics
Serial Year :
2017
Record number :
2408820
Link To Document :
بازگشت