Author/Authors :
- - نويسنده Department of Mathematics, Faculty of Science, Azarbaijan shahid Madani university, Tabriz, Iran. Haghighatdoost Ghorbanali , - - نويسنده Department of Mathematics, Faculty of Science, Azarbaijan shahid Madani university, Tabriz, Iran. Abbasi Makrani Hami , - - نويسنده Department of Mathematics, Faculty of Science, Azarbaijan shahid Madani university, Tabriz, Iran. Mahjoubi Rasoul
Abstract :
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associatea cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regularmultiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left$mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a paracyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ and then prove the existence of a cyclic structure associated to this triple.