Title of article :
Dust Level Forecasting and its Interaction with Gaseous Pollutants Using Artificial Neural Network: A Case Study for Kermanshah, Iran
Author/Authors :
Zinatizadeh, A.A Department of Applied Chemistry - Faculty of Chemistry - Razi University, Kermanshah, Iran , Pirsaheb, M Health Research Center (KHRC) - Kermanshah University of Medical Science, Iran , Kurdian, A.R Faculty of Chemical Engineering - Sahand University of technology, Sahand New Town, East Azerbaijan, Iran , Zinadini, S Department of Applied Chemistry - Faculty of Chemistry - Razi University, Kermanshah, Iran , Dezfoulinejad, A Department of Environment, Kermanshah, Ira , Yavari, F Department of Environment, Kermanshah, Iran , Atafar, Z Health Research Center (KHRC) - Kermanshah University of Medical Science, Iran
Pages :
8
From page :
51
To page :
58
Abstract :
An artificial neural network (ANN) was used to forecast natural airborne dust as well as five gaseous air pollutants concentration by using a combination of daily mean meteorological measurements and dust storm occurrence at a regulatory monitoring site in Kermanshah, Iran for the period of 2007-2011. We used local meteorological measurementsand air quality data collected from three previous days as independent variables and the daily pollutants records as the dependent variables (response). Neural networks could be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Robustness of constructed ANN acknowledged and the effects of variation of input parameters were investigated. As a result, dust had a decreasing impact on the gaseous pollutants level. The prediction tests showed that the ANN models used in this study have the high potential of forecasting dust storm occurrence in the region studied by using conventional meteorological variables.
Farsi abstract :
پيش گويي گرد وغبار با منشاء طبيعي و همچنين غلظت پنج آلاينده گازي با استفاده از اطلاعات جمع آوري شده از متوسط روزانه پارامترهاي هواشناسي و پديده گرد وغبار در ايستگاه پايش هواي كرمانشاه -ايران در دوره 2011-2007 با بهره گيري از يك شبكه هوش مصنوعي انجام شد. برداشت هاي هواشناسي محلي و داده هاي كيفيت هواي مربوط به سه روز گذشته بعنوان متفيرهاي مستقل و اطلاعات روزانه از آلاينده ها بعنوان پاسخ استفاده شدند. به منظور ايجاد سيستم هاي هشدار دهنده بر مبناي اطلاعات ايستگاههاي پايش، شبكه عصبي مي تواند استفاده شود. اطمينان پذيري شبكه عصبي مصنوعي ارايه شده تاييد شد و اثرات تغيير پارامترهاي ورودي مورد بررسي قرار گرفت. بعنوان نتيجه گيري، گرد و غبار اثر كاهشي بر غلظت آلاينده هاي گازي نشان داد. آزمايشات مربوط به پيش بيني نشان داد كه مدل هاي شبكه عصبي استفاده شده در اين مطالعه، قابليت بالايي در پيشگويي رخدادهاي گرد و غبار در منطقه مورد مطالعه دارند
Keywords :
Artificial neural network , Dust , Gaseous pollutants , Forecasting model
Journal title :
Astroparticle Physics
Serial Year :
2014
Record number :
2410828
Link To Document :
بازگشت