Title of article :
Supercontinuum Generation in a Highly Nonlinear Chalcogenide/ MgF2 Hybrid Photonic Crystal Fiber
Author/Authors :
Alizadeh Pahlavani Mohammad Reza نويسنده , Seifouri Mahmood نويسنده Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
Pages :
10
From page :
69
To page :
78
Abstract :
In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coefficient and dispersion optimization. For the analysis, finite difference frequency domain (FDFD) method is employed. Because of the high nonlinear refractive index of the chalcogenide glass and high difference between the refractive index of the core and the cladding, a small effective mode area of 0.68 μm2 is obtained. The nonlinear coefficient is 14.98 W-1m-1 at the wavelength of 1.8 μm. Dispersion is almost flat from 1.6 μm up to 2.8 μm. The supercontinuum spectrum calculated ranges from 1 μm to 6 μm. The presented structure is appropriate for medical imaging, optical coherence tomography and optical communications
Journal title :
Astroparticle Physics
Serial Year :
2018
Record number :
2411779
Link To Document :
بازگشت