Title of article :
Ab initio simulations of p-type porous silicon nanostructures
Author/Authors :
Rosas Landa Loustau, Emilye Centro de Investigación en Energía - Universidad Nacional Autónoma de México (UNAM) - Temixco, México , del Río, Jesús A Centro de Investigación en Energía - Universidad Nacional Autónoma de México (UNAM) - Temixco, México , Tagüeña-Martínez, Julia Centro de Investigación en Energía - Universidad Nacional Autónoma de México (UNAM) - Temixco, México , E Sansores, Luis Centro de Investigación en Energía - Universidad Nacional Autónoma de México (UNAM) - Temixco, México , Nava, Rocío Centro de Investigación en Energía - Universidad Nacional Autónoma de México (UNAM) - Temixco, México
Pages :
6
From page :
1
To page :
6
Abstract :
The morphology of porous silicon (p-Si) depends on several parameters such as the doping type and the carriers’ concentration of the crystalline silicon substrate. The electrolytes used in the p-Si fabrication also have an important role. The final structure determines if p-Si is luminescent or suitable for photonic applications. Experimental results on p-Si produced by electrochemical etching show that although the carriers are greatly reduced by the etching process, boron atoms remain in the bulk. The study of p-type porous silicon nanostructures by means of an ab initio computational simulation might help to understand how boron atoms influence the p-Si final structure. Here, we report electronic and topological properties of ten p-type porous silicon structures as an extension of our previous paper on p-type crystalline silicon. Our results suggest that the boron atoms can not remain bonded on the porous surface but do so in the bulk. The presence of impurities changes the bond distance of their neighbors within a radius of 5 Å. The energy of the models is essentially the same for all the boron positions in the silicon backbone. The high electronic density around the boron impurity could influence the trajectory of an HF ion entering a p-Si pore during the fabrication process.
Keywords :
Porous silicon , Nanomaterials , Computational simulations
Journal title :
Astroparticle Physics
Serial Year :
2013
Record number :
2435971
Link To Document :
بازگشت