Title of article :
Preconcentration based dispersive liquid-liquid microextraction for spectrophotometric determination of zinc in natural water and human blood after multivariate optimization based on Box-Behnken design
Author/Authors :
Niazi, Ali Department of Chemistry - Faculty of Science - Islamic Azad University - Arak Branch , Akbari, Mona Department of Chemistry - Faculty of Science - Islamic Azad University - Arak Branch , Negahdari, Roza Department of Chemistry - Faculty of Science - Islamic Azad University - Arak Branch , Sarkhosh, Maryam Department of Chemistry - Faculty of Science - Islamic Azad University - Arak Branch , Khosravi, Asiyeh Department of Chemistry - Faculty of Science - Islamic Azad University - Arak Branch
Abstract :
A new simple and rapid dispersive liquid-liquid microextraction has been applied to preconcentrate trace
levels of zinc as a prior step to its determination by spectrophotometric method. In the proposed method, 4-
(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as
extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial
designs. Results of the two level full factorial design (24) based on an analysis of variance demonstrated that
the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant.
Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction
solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs
are linear in the range of 30-220 ng mL-1 with detection limit of 11.2 ng mL-1 (3δB/m) and the enrichment
factor of this method for zinc reached at 130. The relative standard deviation (RSD) is 1.4% (n=7) at 50 ng
mL-1 level. The method is successfully applied to the determination of trace amount of zinc in water and
human blood samples.
Keywords :
Zinc , Dispersive liquid-liquid microextraction , Experimental design , Spectrophotometry , Water sample , Human blood sample
Journal title :
Astroparticle Physics