Title of article :
The Artinian property of certain graded generalized local chohomology modules
Author/Authors :
gu, y. , chu, l.
Pages :
6
From page :
423
To page :
428
Abstract :
Let R=⊕n∈N0Rn be a Noetherian homogeneous ring with local base ring (R0,m0), M and N two finitely generated graded R-modules. Let t be the least integer such that HtR+(M,N) is not minimax. We prove that Hjm0R(HtR+(M,N)) is Artinian for j=0,1. Also, we show that if cd(R+,M,N)=2 and t∈N0, then Htm0R(H2R+(M,N)) is Artinian if and only if Ht+2m0R(H1R+(M,N)) is Artinian.
Keywords :
Graded local cohomology modules , Artinian modules , minimax
Journal title :
Astroparticle Physics
Serial Year :
2015
Record number :
2440139
Link To Document :
بازگشت