Title of article :
Fuglede-Putnam Type Theorems Via the Moore-Penrose Inverse and Aluthge Transform
Author/Authors :
Sohrabi Chegeni, M Lorestan University , abbasi, n Lorestan University , Emamalipour, h Faculty of Mathematical Sciences - University of Tabriz
Pages :
14
From page :
33
To page :
46
Abstract :
Let A, B ∈ B(H), where H is a Hilbert space. Let T and T † denote the Aluthge transform and the Moore-Penrose inverse of T , respectively. We show that (i) if A∗ is quasinormal, then ((A)†, (B ((A)†, (B)†). In general, (T )† = T †. Finally, we give some applications to the Lambert multiplication operator MwEMu on L2(Σ), where E is the conditional expectation operator.
Keywords :
Fuglede-Putnam , aluthge transformation , moore-penrose inverse , polar decomposition , conditional expectation , partial isometry
Journal title :
Astroparticle Physics
Serial Year :
2017
Record number :
2440206
Link To Document :
بازگشت