Other language title :
تعيين بهترين الگوريتم طبقه بندي نظارت شده جهت تهيه نقشه كاربري اراضي با استفاده از تصاوير ماهوارهاي مطالعه موردي: شهرستان بافت
Title of article :
Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran
Author/Authors :
Mohamadi, Sedigheh Department of Ecology - Institute of Science and High Technology and Environmental Sciences - Graduate University of Advanced Technology - Kerman, Iran
Pages :
12
From page :
297
To page :
308
Abstract :
Abstract. According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most suitable method of supervised classification for preparing the land use maps involving no grazing, heavy and moderate grazing rangelands, ploughed rangelands for harvesting licorice roots and dry land and fallow lands in Baft, Kerman province, Iran. After being assured of accuracy and lack of geometric and radiometric errors, the images of Landsat and ETM+ sensors achieved on 3 July 2014 have been used. A variety of algorithms involving Mahalanobis distance, Minimum distance, Parallelepiped, Neural network, Binary encoding and Maximum likelihood was investigated based on field data which were obtained simultaneously. These algorithms were compared with respect to error matrix indices, Kappa coefficient, total accuracy, user accuracy and producer accuracy of maps using ENVI 4,5. The results indicated that the Maximum likelihood algorithm with Kappa coefficient and total accuracy of map estimated as 0.969 and 97.77% were regarded as the best supervised classification algorithm in order to prepare the land use maps. Mahalanobis distance algorithm had a low ability for recognizing two types of dry land and fallow land uses concerning the extracted maps. According to the findings, various land use maps as rangelands under three grazing intensities and ploughed rangelands to harvest the licorice roots provided by the means of algorithms related to neural networks were not of sufficient accuracy. The highest Kappa coefficient of Neural network algorithms was estimated as 0.5 and attributed to the algorithm of multilayer perceptron neural network with the logistic activation function and one hidden layer
Farsi abstract :
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻫﺪف اﺻﻠﯽ ﺗﮑﻨﻮﻟﻮژي ﺳﻨﺠﺶ از دور، ﻃﺒﻘﻪﺑﻨﺪي ﺗﺼﺎوﯾﺮ ﺳﻨﺠﻨﺪهﻫـﺎي ﻣـﻮرد ﻧﻈـﺮ را ﻣﯽﺗﻮان ﺑﻪ ﻋﻨﻮان ﻣﻬﻤﺘﺮﯾﻦ ﺑﺨﺶ ﻣﻄﺎﻟﻌﻪ ﺗﻔﺴﯿﺮ ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮارهاي ﺑﻪ ﺷﻤﺎر آورد. اﻟﮕـﻮرﯾﺘﻢ ﻫـﺎي ﻣﺨﺘﻠﻔـﯽ ﻣﺘﻨﺎﺳﺐ ﺑﺎ ﮐﺎرﺑﺮي اراﺿﯽ در ﻃﺒﻘﻪﺑﻨﺪي ﻧﻈﺎرت ﺷﺪه وﺟﻮد دارد ﮐﻪ ﺑﺎﯾﺪ دﻗﯿﻖﺗﺮﯾﻦ آﻧﻬﺎ را ﻣﺸـﺨﺺ ﻧﻤـﻮد. ﺑﻨﺎﺑﺮاﯾﻦ ﭘﮋوﻫﺶ ﺣﺎﺿﺮ ﺑﻪ ﻣﻨﻈﻮر ﺗﻌﯿﯿﻦ ﺑﻬﺘﺮﯾﻦ روش ﻃﺒﻘﻪﺑﻨﺪي ﻧﻈﺎرت ﺷﺪه ﺟﻬﺖ ﺗﻬﯿـﻪ ﻧﻘﺸـﻪ ﮐـﺎرﺑﺮي اراﺿﯽ ﺷﺎﻣﻞ ﻣﺮاﺗﻊ ﺗﺤﺖ ﺳﻪ ﺷﺪت ﭼﺮاي ﺳﻨﮕﯿﻦ، ﻣﺘﻮﺳﻂ و ﺑﺪون ﭼﺮا، ﻣﺮاﺗﻊ ﺷﺨﻢ ﺧﻮرده ﺟﻬﺖ ﺑﺮداﺷﺖ ﺷﯿﺮﯾﻦ ﺑﯿﺎن، دﯾﻤﺰار و دﯾﻤﺰار رﻫﺎ ﺷﺪه )آﯾﺶ( در ﺷﻬﺮﺳﺘﺎن ﺑﺎﻓﺖ اﺳﺘﺎن ﮐﺮﻣﺎن اﻧﺠﺎم ﺷﺪ. از ﺗﺼﻮﯾﺮ ﺗـﺎرﯾﺦ 1393/04/12 ﻣﺎﻫﻮاره Landsat و ﺳﻨﺠﻨﺪه +ETM، ﭘﺲ از اﻃﻤﯿﻨﺎن از ﻋﺪم وﺟـﻮد ﺧﻄـﺎي رادﯾﻮﻣﺘﺮﯾـﮏ و ﻫﻨﺪﺳﯽ، اﺳﺘﻔﺎده ﺷـﺪ. ﺑـﺮ ﻣﺒﻨـﺎي داده ﻫـﺎي ﺻـﺤﺮاﯾﯽ ﺑﺮداﺷـﺖ ﺷـﺪه ﻫﻤﺰﻣـﺎن، اﻟﮕـﻮرﯾﺘﻢ ﻫـﺎي ﻣﺨﺘﻠـﻒ )Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood, Binary encoding, Neural network( ﺑﺮ اﺳﺎس ﺷﺎﺧﺺﻫﺎي ﻣﺎﺗﺮﯾﺲ ﺧﻄﺎ، ﺿﺮﯾﺐ ﮐﺎﭘﺎ، ﺻﺤﺖ ﮐﻠﯽ، ﺻﺤﺖ ﮐﺎرﺑﺮ و ﺻﺤﺖ ﺗﻮﻟﯿﺪﮐﻨﻨﺪه ﻧﻘﺸﻪ در ﻣﺤﯿﻂ ﻧﺮم اﻓﺰاري 4,5 ENVI ﻣﻮرد ﻣﻘﺎﯾﺴﻪ ﻗﺮار ﮔﺮﻓﺘﻨﺪ. ﻃﺒـﻖ ﻧﺘـﺎﯾﺞ اﯾـﻦ ﺗﺤﻘﯿﻖ اﻟﮕﻮرﯾﺘﻢ ﺣﺪاﮐﺜﺮ ﺗﺸﺎﺑﻪ ﺑﺎ ﺿﺮﯾﺐ ﮐﺎﭘﺎ ﻣﻌﺎدل 0/969 و ﺻـﺤﺖ ﮐﻠـﯽ ﻧﻘﺸـﻪ ﻣﻌـﺎدل 97/77 درﺻـﺪ ﺑﻌﻨﻮان ﺑﻬﺘﺮﯾﻦ اﻟﮕﻮرﯾﻢ ﻃﺒﻘﻪﺑﻨﺪي ﻧﻈﺎرت ﺷﺪه ﺟﻬﺖ ﺗﻮﻟﯿﺪ ﻧﻘﺸﻪﻫﺎي ﮐـﺎرﺑﺮي اراﺿـﯽ در ﻣﻨﻄﻘـﻪ ﻣﻌﺮﻓـﯽ ﻣﯽﺷﻮد. ﺗﻮاﻧﺎﯾﯽ ﺗﺸﺨﯿﺺ دو ﻧﻮع ﮐﺎرﺑﺮي آﯾﺶ و دﯾﻤﺰار در ﻧﻘﺸﻪ اﺳﺘﺨﺮاج ﺷﺪه ﺑﺎ اﻟﮕـﻮرﯾﺘﻢ ﻣﺎﻫـﺎﻻﻧﻮﺑﯿﺲ ﮐﻤﺘﺮ ﺑﻮد. ﻃﺒﻖ ﯾﺎﻓﺘﻪﻫﺎ ﻧﻘﺸﻪﻫﺎي ﻣﺨﺘﻠﻒ ﮐﺎرﺑﺮي اراﺿﯽ ﺗﻮﺳﻂ اﻟﮕﻮرﯾﺘﻢﻫﺎي ﻣﺮﺗﺒﻂ ﺑـﺎ روش ﻫـﺎي ﺷـﺒﮑﻪ ﻋﺼﺒﯽ از دﻗﺖ ﮐﺎﻓﯽ در ﺗﻔﮑﯿﮏ ﮐﺎرﺑﺮي اراﺿﯽ ﻣﺮﺗﻌﯽ ﺗﺤﺖ ﺳﻪ ﺷﺪت ﭼﺮاﯾﯽ و ﻣﺮﺗﻊ ﺷﺨﻢ ﺧـﻮرده ﺟﻬـﺖ ﺑﺮداﺷﺖ رﯾﺸﻪ ﺷﯿﺮﯾﻦ ﺑﯿﺎن ﺑﺮﺧﻮردار ﻧﺒﻮدﻧﺪ. ﺑﺎﻻﺗﺮﯾﻦ ﺿﺮﯾﺐ ﮐﺎﭘﺎ در اﻟﮕﻮرﯾﺘﻢﻫﺎي ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﭘﺮﺳﭙﺘﺮون ﭼﻨﺪﻻﯾﻪ ﮐﻪ ﻣﻌﺎدل0/5 ﺑﻮد ﺑﻪ روﯾﻪ ﺗﺎﺑﻊ ﻓﻌﺎلﺳﺎزي ﻟﻮﺟﺴﺘﯿﮏ ﺑﺎ ﯾﮏ ﻻﯾﻪ ﻣﯿﺎﻧﯽ ﺗﻌﻠﻖ داﺷﺖ
Keywords :
Neural network , Accuracy , Remote sensing , Land use , Rangeland ecosystem
Journal title :
Astroparticle Physics
Serial Year :
2016
Record number :
2440756
Link To Document :
بازگشت