Other language title :
ﺑﺮآورد ﺣﺎﺻﻠﺨﯿﺰي ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﺎن در ﻣﺮاﺗﻊ اﻟﺴﻮﯾﺪا ﺑﺎدﯾﺎ ﮐﺸﻮر ﺳﻮرﯾﻪ ﺑﺎ اﺳﺘﻔﺎده از ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮارهاي BKA و KVA
Title of article :
Estimating Plant Dry Matter Productivity for AL-Sweeda Badia Rangeland (Syria) at Different Processing Levels of BKA, KVA Satellite Images
Author/Authors :
Hmeidan, Ghadir Receiving and Processing Department - Space Technology Center - General Organization of Remote Sensing GORS - Damascus, Syria , Alboody, Ahed Receiving and Processing Department - Space Technology Center - General Organization of Remote Sensing GORS - Damascus, Syria
Pages :
13
From page :
272
To page :
284
Abstract :
Estimation of plant dry matter to management of rangelands with high accuracy is important for managers. This research aims to compare Plant Dry Matter Productivity (PDMP) values estimated by Normalized Difference Vegetation Index (NDVI) derived from satellite images of BKA and KVA according to different levels of satellite image processing for AL-Sweeda Badia (Syria) during April and July in 2015 and October 2014. NDVI was calculated according to Digital Number values (DN); then, Top of Atmosphere values (TOA), and Ground Surface (GS) values after Atmospheric Correction (AC) were computed from L8 satellite images simultaneously with field measurements. A relationship between two time-dependent satellite images was created. Then, the derived relationships were adopted by L8 (PDMP) relationship estimation. Matter productivity average values according to TOA and GS were 15-42, 969-214, 3254-22 and 576-563 kg/h for the previous dates, respectively. There was a weak non-significant correlation between DN values and Matter productivity (≤0.063). an‎d for TOA level, the relationship was relatively weak but significant (≤0.5). After atmospheric correction, it was strong (≥0.7) and significant at 1% and 5% levels and field verification measurements were consistent with 2014. A relationship between NDVI and PDMP for each previous value was determined according to NDVI values of modern images. Previous relationships were applied to estimate PDMP; then, objective maps were produced. DN satellite images as well as TOA values but at lower rate contained geometrical distortions resulting from terrain, climate, velocity changes, and sensor height and radiation refraction in atmosphere. Using GS after AC was good in rangelands for predicting and estimating PDMP.
Farsi abstract :
ﭼﮑﯿﺪه. ﺑﺮآورد ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﯽ ﺑﺮاي ﻣﺪﯾﺮﯾﺖ ﻣﺮاﺗﻊ ﺑﺎ دﻗﺖ ﺑﺎﻻ ﺟﻬﺖ ﻣﺪﯾﺮان ﺑﺴﯿﺎر ﻣﻬﻢ اﺳﺖ. ﻫﺪف از ﺗﺤﻘﯿﻖ ﺣﺎﺿﺮ ﻣﻘﺎﯾﺴﻪ دﻗﺖ ﺑﺮآورد ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﯽ ﺑﺎ اﺳﺘﻔﺎده از ﺷﺎﺧﺺ ﭘﻮﺷﺶ ﮔﯿﺎﻫﯽ )NDVI( ﺑﺪﺳﺖ آﻣﺪه از ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮاره BKA و KVA ﺑﺎ در ﻧﻈﺮ داﺷﺘﻦ روﺷﻬﺎي ﻣﺨﺘﻠﻒ ﭘﺮدازش ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮارهاي ﺑﺮاي ﻣﻨﻄﻘﻪ اﻟﺴﻮﯾﺪا ﺑﺎدﯾﺎ ﮐﺸﻮر ﺳﻮرﯾﻪ در ﻃﯽ ﻣﺎهﻫﺎي ﻓﺮوردﯾﻦ، اردﯾﺒﻬﺸﺖ، ﺧﺮداد و ﺗﯿﺮ ﺳﺎل 1394 و ﻣﻬﺮ ﻣﺎه ﺳﺎل 1393 ﺑﻮد. ﺷﺎﺧﺺ ﮔﯿﺎﻫﯽ NDVI ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ارزش ﺷﻤﺎره رﻗﻢ و ارزﺷﻬﺎي ﺟﻮي ﺣﺴﺎب ﺷﺪ و ﺳﭙﺲ ﭘﻮﺷﺶ ﺳﻄﺢ زﻣﯿﻦ ﺑﻌﺪ از ﺗﺼﺤﯿﺢ اﺗﻤﺴﻔﺮي از روي ﺷﺒﯿﻪﺳﺎزي ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮاره ﻟﻨﺪﺳﺖ 8 اﻧﺪازهﮔﯿﺮي ﺷﺪه از ﺳﻄﺢ زﻣﯿﻦ ﻣﺤﺎﺳﺒﻪ ﺷﺪ. ﺑﯿﻦ ﺗﺼﺎوﯾﺮ دو ﺳﺮي زﻣﺎﻧﯽ ﻣﺎﻫﻮاره راﺑﻄﻪاي ﺑﺮﻗﺮار ﮔﺮدﯾﺪ. ﺳﭙﺲ اﯾﻦ رواﺑﻂ ﺗﻮﺳﻂ ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﯽ ﻣﺎﻫﻮراه ﻟﻨﺪﺳﺖ 8 ﺳﺎزﮔﺎر ﺷﺪﻧﺪ. ﻣﺘﻮﺳﻂ ﺗﻮﻟﯿﺪ ﻣﺎده ﺧﺸﮏ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﺮاﯾﻂ ﺳﻄﺢ زﻣﯿﻦ و ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮاره ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﺮاي ﺗﺎرﯾﺦﻫﺎي ﻣﻮرد ﻧﻈﺮ ﯾﻌﻨﯽ ﻓﺮوردﯾﻦ ﺑﻪ ﻣﯿﺰان 15 اﻟﯽ 42، اردﯾﺒﻬﺸﺖ 214 اﻟﯽ 969، ﺧﺮداد 325 و ﺗﯿﺮ 422 در ﺳﺎل 1394 و در ﻣﻬﺮﻣﺎه ﺳﺎل 1393 ﺑﯿﻦ 563 و 576 ﮐﯿﻠﻮﮔﺮم در ﻫﺘﺎر ﺑﻮدﻧﺪ. راﺑﻄﻪ ﻫﻤﺒﺴﺘﮕﯽ ﺿﻌﯿﻒ ﻏﯿﺮ ﻣﻌﻨﯽ داري ﺑﯿﻦ ارزش ﺷﻤﺎره رﻗﻢ )DN( و ﻣﺎده ﺧﺸﮏ ﺑﻪ ﻣﯿﺰان ﮐﻤﺘﺮ از 63 درﺻﺪ ﺑﻮد. اﯾﻦ اﯾﻦ راﺑﻄﻪ ﻫﻤﺒﺴﺘﮕﯽ ﺑﺮاي ﺳﻄﻮح ﻣﺨﺘﻠﻒ ﺑﺎﻻي اﺗﻤﺴﻔﺮ ﻧﯿﺰ ﺿﻌﯿﻒ و اﻣﺎ ﻣﻌﻨﯽدار ﺑﻪ ﻣﯿﺰان ﮐﻤﺘﺮ از 50 درﺻﺪ ﺑﻮد. ﺑﻌﺪ از ﭘﺮدازش ﺗﺼﻮﯾﺮ و اﻧﺠﺎم ﺗﺼﺤﯿﺤﺎت اﺗﻤﺴﻔﺮي ﺑﺮ روي ﺗﺼﺎوﯾﺮ رواﺑﻂ ﻫﻤﺒﺴﺘﮕﯽ ﻗﻮي ﺷﺪﻧﺪ و ﺑﻪ ﻣﯿﺰان ﺑﯿﺶ از 70 درﺻﺪ رﺳﯿﺪﻧﺪ ﮐﻪ در ﻧﺘﯿﺠﻪ آن در ﺳﻄﺢ ﯾﮏ و ﭘﻨﺞ درﺻﺪ ﻣﻌﻨﯽدار ﺷﺪﻧﺪ و ﺑﺎ اﻧﺪازهﮔﯿﺮيﻫﺎي ﻣﯿﺪاﻧﯽ در ﺳﺎل 1393 ﻫﻤﺨﻮاﻧﯽ داﺷﺘﻨﺪ. ﻫﻤﭽﻨﯿﻦ ﺑﺎ اﺳﺘﻔﺎده از ﺗﺼﺎوﯾﺮ ﺟﺪﯾﺪ ﺑﯿﻦ ﺷﺎﺧﺺ ﭘﻮﺷﺶ ﮔﯿﺎﻫﯽ NDVI و ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﯽ راﺑﻄﻪ ﺑﺮﻗﺮار ﺷﺪ. اﯾﻦ رواﺑﻂ ﺑﺪﺳﺖ آﻣﺪه ﺑﺮاي ﺑﺮآورد ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﯽ ﺑﮑﺎر رﻓﺘﻨﺪ و ﺳﭙﺲ ﻧﻘﺸﻪﻫﺎي ﺧﺮوﺟﯽ ﺑﻪ ﺷﮑﻞ وﮐﺘﻮر ﺗﻮﻟﯿﺪ ﺷﺪﻧﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ ﺷﻤﺎره رﻗﻢ )DN( ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮارهاي ﻫﻤﺎﻧﻨﺪ ارزشﻫﺎي ﻋﺎﻣﻞ ﺑﺎﻻي اﺗﻤﺴﻔﺮ ﺑﻮدﻧﺪ اﻣﺎ در ﻣﻘﺪار ﮐﻤﺘﺮ ﮐﻪ ﺗﺤﺖ ﺗﺎﺛﯿﺮ ﺗﻐﯿﯿﺮات ﺳﻪ ﺑﻌﺪي و آب و ﻫﻮا و ﻧﯿﺰ اﻧﻌﮑﺎس اﺷﻌﻪ در ﻓﻀﺎي اﺗﻤﺴﻔﺮ ﻗﺮار داﺷﺘﻨﺪ. ﻧﯿﺰ ﺑﺎﯾﺪ ﮔﻔﺖ ﮐﻪ ﺑﮑﺎر ﺑﺮدن ﭘﻮﺷﺶ ﺳﻄﺢ زﻣﯿﻦ ﺑﻌﺪ از اﻧﺠﺎم ﺗﺼﺤﯿﺤﺎت اﺗﻤﺴﻔﺮﯾﮏ ﺑﺮ روي ﺗﺼﺎوي در ﻣﺮاﺗﻊ ﺑﺮاي ﭘﯿﺶﺑﯿﻨﯽ و ﺑﺮآورد ﻣﯿﺰان ﻣﺎده ﺧﺸﮏ ﮔﯿﺎﻫﯽ ﺧﻮب ﺑﻮد.
Keywords :
Levels of satellite image processing , Digital number , Top of atmosphere , Ground surface , Landsat 8 , NDVI , Plant dry matter productivity
Journal title :
Astroparticle Physics
Serial Year :
2018
Record number :
2441012
Link To Document :
بازگشت