Other language title :
ﻣﻘﺎﯾﺴﻪ ﺗﮑﻨﯿﮏﻫﺎي ﻣﺨﺘﻠﻒ ﻣﺪلﺳﺎزي ﺑﺮاي ﭘﯿﺶﺑﯿﻨﯽ ﺣﻀﻮر و ﻋﺪم ﺣﻀﻮر ﺑﺮﺧﯽ ﮔﻮﻧﻪﻫﺎي ﮔﯿﺎﻫﯽ ﻏﺎﻟﺐ در ﻣﺮاﺗﻊ ﮐﻮﻫﺴﺘﺎﻧﯽ اﺳﺘﺎن ﻣﺎزﻧﺪران
Title of article :
Comparing Different Modeling Techniques for Predicting Presence-absence of Some Dominant Plant Species in Mountain Rangelands, Mazandaran Province
Author/Authors :
Kargar, Mansoureh Watershed and Natural Resources Administration of Alborz Province - Karaj, Iran , Akhzari, Davoud Department of Range and Watershed Management - Malayer University, Iran , Saadatfar, Amir Research and Technology of Plant production (RTIPP) - Shahid Bahonar University of Kerman - Kerman, Iran
Pages :
15
From page :
219
To page :
233
Abstract :
In applied studies, the investigation of the relationship between a plant species and environmental variables is essential to manage ecological problems and rangeland ecosystems. This research was conducted in summer 2016. The aim of this study was to compare the predictive power of a number of Species Distribution Models (SDMs) and to evaluate the importance of a range of environmental variables as predictors in the context of rangeland vegetation. In this study, Aflah rangelands with 5721 ha were selected. In this research, predictor variables included climatic, topographic and edaphic parameters. The sampling method was equal random-classification for vegetation and soil. Topographic factors including slope, elevation and aspect were determined in Arc GIS software. In each sample unit, 10 plots were established (total 350 plots) and the lists of the species, their number, their presence or absence were recorded. The efficacy of five different modelling techniques to predict the distribution of five dominant rangeland plant species (Agropyron repens, Festuca ovina, Leucopoa sclerophylla, Stachys lavandulifolia and Tragopogon graminifolius) was evaluated. The models were Generalized Linear Model (GLM), Classification and Regression Trees (CART), Boosted Regression Trees (BRT), Generalized Additive Models (GAM), and Random Forest (RF). Data analysis was done using the R software, version 3.1.1. The results showed that GAM model demonstrated most consistently high predictive power over the species in the rangeland context investigated here. GAM had higher Area Under the Curve (AUC). The AUC (0.67, 0.77, 0.69, 0.64 and 0.60 and Kappa values (0.10, 0.10, 0.19, 0.01 and 0.11) were obtained for Agropyron repens, Festuca ovina, Leucopoa sclerophylla, Stachys lavandulifolia and Tragopogon graminifolius, respectively. GAM model exhibited the most predictive power. The importance analysis of the environmental variables showed that N, pH and aspect were the most important variables in the GAM model. Overall, N, P and C/N soil (0.452, 0.437 and 0.389) were the most important environmental variables.
Farsi abstract :
ﭼﮑﯿﺪه. در ﻣﻄﺎﻟﻌﺎت ﮐﺎرﺑﺮدي، ﺑﺮرﺳﯽ راﺑﻄﻪ ﺑﯿﻦ ﺣﻀﻮر و ﻋﺪم ﺣﻀﻮر ﮔﻮﻧﻪ ﮔﯿﺎﻫﯽ و ﻣﺘﻐﯿﺮﻫﺎي ﻣﺤﯿﻄﯽ ﺑﺮاي ﻣﺪﯾﺮﯾﺖ ﻣﺸﮑﻼت اﮐﻮﻟﻮژﯾﮑﯽ و اﮐﻮﺳﯿﺴﺘﻢﻫﺎي ﻣﺮﺗﻌﯽ ﺿﺮوري اﺳﺖ. اﯾﻦ ﺗﺤﻘﯿﻖ در ﺗﺎﺑﺴﺘﺎن ﺳﺎل 1395 اﻧﺠﺎم ﺷﺪ. ﻫﺪف از اﯾﻦ ﻣﻄﺎﻟﻌﻪ ﻣﻘﺎﯾﺴﻪ ﻗﺪرت ﭘﯿﺶﺑﯿﻨﯽ ﺗﻌﺪادي از ﻣﺪلﻫﺎي ﭘﺮاﮐﻨﺶ ﮔﻮﻧﻪ )SDM( و ارزﯾﺎﺑﯽ اﻫﻤﯿﺖ ﺗﻌﺪادي از ﻣﺘﻐﯿﺮﻫﺎي ﻣﺤﯿﻄﯽ ﺑﻪ ﻋﻨﻮان ﭘﯿﺶﺑﯿﻨﯽﮐﻨﻨﺪهﻫﺎ در ارﺗﺒﺎط ﺑﺎ ﭘﻮﺷﺶ ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ ﺑﻮد. در اﯾﻦ ﺗﺤﻘﯿﻖ، ﻣﺮاﺗﻊ ﻣﻨﻄﻘﻪ اﻓﻼح ﺑﺎ وﺳﻌﺖ 5721 ﻫﮑﺘﺎر ﺑﻪ ﻋﻨﻮان ﻣﻨﻄﻘﻪ ﻣﻄﺎﻟﻌﺎﺗﯽ اﻧﺘﺨﺎب ﺷﺪ. ﻣﺘﻐﯿﺮﻫﺎي ﭘﯿﺶﺑﯿﻨﯽ ﮐﻨﻨﺪه ﺷﺎﻣﻞ ﻓﺎﮐﺘﻮرﻫﺎي اﻗﻠﯿﻤﯽ )ﺑﺎرﻧﺪﮔﯽ، دﻣﺎ و رﻃﻮﺑﺖ(، ﺗﻮﭘﻮﮔﺮاﻓﯽ )ﺷﯿﺐ، ﺟﻬﺖ و ارﺗﻔﺎع( و ﻋﻮاﻣﻞ اداﻓﯿﮑﯽ ﺑﻮدﻧﺪ. روش ﻧﻤﻮﻧﻪﮔﯿﺮي ﺑﻪ ﺻﻮرت ﺗﺼﺎدﻓﯽ- ﻃﺒﻘﻪﺑﻨﺪي ﺷﺪه ﺑﺮاي ﭘﻮﺷﺶ ﮔﯿﺎﻫﯽ و ﺧﺎك ﺑﻮد. ﻋﻮاﻣﻞ ﺗﻮﭘﻮﮔﺮاﻓﯽ ﺷﺎﻣﻞ ﺷﯿﺐ، ارﺗﻔﺎع و ﺟﻬﺖ در ﻧﺮم اﻓﺰار Arc GIS ﺗﻌﺮﯾﻒ ﺷﺪﻧﺪ. در ﻫﺮ واﺣﺪ ﻧﻤﻮﻧﻪﺑﺮداري، 10 ﭘﻼت ﯾﮏ ﻣﺘﺮ ﻣﺮﺑﻌﯽ )ﻣﺠﻤﻮع 350 ﭘﻼت( اﺳﺘﻘﺮار ﯾﺎﻓﺘﻨﺪ و ﻟﯿﺴﺖ ﮔﻮﻧﻪﻫﺎ، ﺗﻌﺪاد و ﺣﻀﻮر ﯾﺎ ﻋﺪم ﺣﻀﻮر ﮔﻮﻧﻪﻫﺎي ﮔﯿﺎﻫﯽ در آﻧﻬﺎ ﺛﺒﺖ ﺷﺪ. ﭘﻨﺞ روش ﻣﺨﺘﻠﻒ ﻣﺪلﺳﺎزي ﺑﺮاي ﭘﯿﺶ ﺑﯿﻨﯽ ﺣﻀﻮر و ﻋﺪم ﺣﻀﻮر ﭘﻨﺞ ﮔﻮﻧﻪ ﮔﯿﺎﻫﯽ ﻏﺎﻟﺐ )Agropyron repens، Stachys lavandulifolia ،Leucopoa sclerophylla ،Festuca ovina و Tragopogon graminifolius( ﻣﻮرد ﺑﺮرﺳﯽ ﻗﺮار ﮔﺮﻓﺘﻨﺪ. ﻣﺪلﻫﺎ ﻋﺒﺎرت ﺑﻮدﻧﺪ از: ﻣﺪل ﺧﻄﯽ ﺗﻌﻤﯿﻢ ﯾﺎﻓﺘﻪ )GLM(، ﻃﺒﻘﻪ ﺑﻨﺪي و رﮔﺮﺳﯿﻮن درﺧﺘﯽ )CART(، درﺧﺖ رﮔﺮﺳﯿﻮن ﺗﻘﻮﯾﺖ ﺷﺪه )BRT(، ﻣﺪل ﺟﻤﻌﯽ ﺗﻌﻤﯿﻢ ﯾﺎﻓﺘﻪ )GAM( و ﺟﻨﮕﻞ ﺗﺼﺎدﻓﯽ )RF(.ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ دادهﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻧﺮم اﻓﺰار R اﻧﺠﺎم ﺷﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ ﻣﺪل GAM ﺗﻮاﻧﺎﯾﯽ ﭘﯿﺶ ﺑﯿﻨﯽ ﺑﺎﻻﯾﯽ ﺑﺮاي ﮔﻮﻧﻪﻫﺎي ﻣﻮﺟﻮد در ﻣﺮﺗﻊ ﻣﻮرد ﺑﺮرﺳﯽ را داﺷﺘﻪ اﺳﺖ. ﻣﺪل GAM داراي ارزش ﻋﺪدي ﺑﺎﻻﯾﯽ ﺑﺮاي ﭘﺎراﻣﺘﺮ ﺳﻄﺢ زﯾﺮ ﻣﻨﺤﻨﯽ )AUC( ﺑﻮد )ﺑﻪ ﺗﺮﺗﯿﺐ 0/64 ،0/69 ،0/77 ،0/67 و 0/60 ﺑﺮاي ﮔﻮﻧﻪﻫﺎي Tragopogon و Stachys lavandulifolia ،Leucopoa sclerophylla ،Festuca ovina ،Agropyron repens ،،Festuca ovina ،Agropyron repens ﺑﺮاي ﮔﻮﻧﻪﻫﺎي .graminifolius . ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ ﻣﺘﻐﯿﺮﻫﺎي ﻣﺤﯿﻄﯽ ﻧﺸﺎن داد ﮐﻪ اﺳﯿﺪﯾﺘﻪ، ﻧﯿﺘﺮوژن و ﺟﻬﺖ ﻣﻬﻤﺘﺮﯾﻦ ﻣﺘﻐﯿﺮﻫﺎ در ﻣﺪل GAM ﺑﻮدﻧﺪ. ﺑﻪ ﻃﻮر ﮐﻠﯽ ﻣﺘﻐﯿﺮﻫﺎي ﻧﯿﺘﺮوژن، ﻧﺴﺒﺖ ﮐﺮﺑﻦ ﺑﻪ ﻧﯿﺘﺮوژن و ﻓﺴﻔﺮ ﺧﺎك ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﺎ ﻣﯿﺰان 0/437 ،0/452 و 0/389 از ﻣﻬﻢﺗﺮﯾﻦ ﻣﺘﻐﯿﺮﻫﺎي ﻣﺤﯿﻄﯽ ﺗﺎﺛﯿﺮ ﮔﺬار ﺑﺮ ﭘﺮاﮐﻨﺶ ﮔﻮﻧﻪﻫﺎي ﻣﻮرد ﻣﻄﺎﻟﻌﻪ ﺑﻮدﻧﺪ.
Keywords :
Aflah rangelands , Random Forest , Soil Topographic , Vegetation
Journal title :
Astroparticle Physics
Serial Year :
2019
Record number :
2441198
Link To Document :
بازگشت