Title of article :
(𝜑1; 𝜑2)-variational principle
Author/Authors :
Maaden, Abdelhakim Faculte des Sciences et Techniques - Laboratoire de Mathematiques et Applications , Maroc , Stouti, Abdelkader Faculte des Sciences et Techniques - Laboratoire de Mathematiques et Applications , Maroc
Abstract :
In this paper we prove that if X is a Banach space, then for every lower semi-continuous bounded
below function f; there exists a (𝜑1; 𝜑2)-convex function g; with arbitrarily small norm, such that
f + g attains its strong minimum on X: This result extends some of the well-known varitional
principles as that of Ekeland [On the variational principle, J. Math. Anal. Appl. 47 (1974) 323-
353], that of Borwein-Preiss [A smooth variational principle with applications to subdifferentiability
and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987) 517-527] and
that of Deville-Godefroy-Zizler [Un principe variationel utilisant des fonctions bosses, C. R. Acad.
Sci. (Paris). Ser.I 312 (1991) 281{286] and [A smooth variational principle with applications to
Hamilton-Jacobi equations in innite dimensions, J. Funct. Anal. 111 (1993) 197-212].
Keywords :
Ekeland's variational principle , smooth variational principle , (𝜑1; 𝜑2)-convex function , (𝜑1; 𝜑2)-variational principle
Journal title :
Astroparticle Physics