Title of article :
Annihilating submodule graph for modules
Author/Authors :
Safaeeyan ، Saeed - University of Yasouj
Pages :
12
From page :
1
To page :
12
Abstract :
Let R be a commutative ring and M an‎ ‎R-module‎. ‎In this article‎, ‎we introduce a new generalization of‎ ‎the annihilating-ideal graph of commutative rings to modules‎. ‎The‎ ‎annihilating submodule graph of M‎, ‎denoted by G(M)‎, ‎is an‎ ‎undirected graph with vertex set A∗(M) and two distinct‎ ‎elements N and K of A∗(M) are adjacent if N^∗K=0‎. ‎In‎ ‎this paper we show that G(M) is a connected graph‎, ‎‎‎diam(G(M))≤3‎, ‎and gr(G(M))≤4 if ‎‎G(M) contains a cycle‎. ‎Moreover‎, ‎G(M) is an empty graph‎ ‎if and only if ann(M) is a prime ideal of R and ‎‎A^∗(M)≠S(M)∖{0} if and only if M is a‎ ‎uniform R-module‎, ‎ann(M) is a semi-prime ideal of R‎ ‎and A∗(M)≠S(M)∖{0}‎. ‎Furthermore‎, ‎R‎ ‎is a field if and only if G(M) is a complete graph‎, ‎for‎ ‎every M∈R−Mod‎. ‎If R is a domain‎, ‎for every divisible‎ ‎module M∈R−Mod‎, ‎G(M) is a complete graph with‎ ‎A^∗(M)=S(M)∖{0}‎. ‎Among other things‎, ‎the‎ ‎properties of a reduced R-module M are investigated when‎ ‎G(M) is a bipartite graph‎.
Keywords :
Module , Annihilating submodule graph , Complete graph.
Journal title :
Transactions on Combinatorics
Serial Year :
2018
Journal title :
Transactions on Combinatorics
Record number :
2448956
Link To Document :
بازگشت