Title of article :
BiGyrogroup: The GroupLike Structure Induced by BiDecomposition of Groups
Author/Authors :
Suksumran ، Teerapong - North Dakota State University , Ungar ، Abraham A. - North Dakota State University
Pages :
32
From page :
111
To page :
142
Abstract :
‎The decomposition $Gamma=BH$ of a group $Gamma$ into a subset B ‎and a subgroup $H$ of $Gamma$ induces‎, ‎under general conditions‎, ‎a ‎grouplike structure for B‎, ‎known as a gyrogroup‎. ‎The famous‎ concrete realization of a gyrogroup‎, ‎which motivated the emergence ‎of gyrogroups into the mainstream‎, ‎is the space of all ‎relativistically admissible velocities along with a binary ‎mbox{operation} given by the Einstein velocity addition law of ‎special relativity theory‎. ‎The latter leads to the Lorentz ‎transformation group $so{1,n}$‎, ‎$ninN$‎, ‎in pseudoEuclidean ‎spaces of signature $(1‎, ‎n)$‎. ‎The study in this article is motivated ‎by generalized Lorentz groups $so{m‎, ‎n}$‎, ‎$m‎, ‎ninN$‎, ‎in ‎pseudoEuclidean spaces of signature $(m‎, ‎n)$‎. ‎Accordingly‎, ‎this ‎article explores the bidecomposition $Gamma = H_LBH_R$ of a group ‎$Gamma$ into a subset $B$ and subgroups $H_L$ and $H_R$ of ‎$Gamma$‎, ‎along with the novel bigyrogroup structure of $B$ induced ‎by the bidecomposition of $Gamma$‎. ‎As an example‎, ‎we show by ‎methods of Clifford mbox{algebras} that the quotient group of the ‎spin group $spin{m‎, ‎n}$ possesses the bidecomposition structure‎.
Journal title :
Mathematics Interdisciplinary Research
Serial Year :
2016
Journal title :
Mathematics Interdisciplinary Research
Record number :
2452876
Link To Document :
بازگشت