Title of article :
Application of Convolution of Daubechies Wavelet in Solving 3D Microscale DPL Problem
Author/Authors :
Kalateh Bojdi ، Zahra - Graduate University of Advanced Technology , Askari Hemmat ، Ataollah - Shahid Bahonar University of Kerman , Tavakoli ، Ali - University of Mazandaran
Abstract :
In this work, the triple convolution of Daubechies wavelet is used to solve the three dimensional (3D) microscale Dual Phase Lag (DPL) problem. Also, numerical solution of 3D timedependent initialboundary value problems of a microscopic heat equation is presented. To generate a 3D wavelet we used the triple convolution of a one dimensional wavelet. Using convolution we get a scaling function and a sevenfold 3D wavelet and all of our computations are based on this new set to approximate in 3D spatial. Moreover, approximation in time domain is based on finite difference method. By substitution in the 3D DPL model, the differential equation converts to a linear system of equations and related system is solved directly. We use the LaxRichtmyer theorem to investigate the consistency, stability and convergence analysis of our method. Numerical results are presented and compared with the analytical solution to show the efficiency of the method.
Keywords :
MRA , Heat equation , wavelet method , Finite difference
Journal title :
Sahand Communications in Mathematical Analysis
Journal title :
Sahand Communications in Mathematical Analysis