Title of article :
Metabolic Signature of Pluripotent Stem Cells
Author/Authors :
Taleahmad ، Sara - Academic Center for Education, Culture and Research (ACECR) , Hassani ، Nafiseh - Academic Center for Education, Culture and Research (ACECR) , Hosseini Salekdeh ، Ghasem - Academic Center for Education, Culture and Research (ACECR) , Baharvand ، Hossein - University of Science and Culture
Pages :
8
From page :
388
To page :
395
Abstract :
Objective: Pluripotent stem cells (PSCs), with the capacity to self-renew and differentiate into all other cell types, are of benefit in regenerative medicine applications. Tightly controlled gene expression networks and epigenetic factors regulate these properties. In this study, we aim to evaluate the metabolic signature of pluripotency under 2i and R2i culture conditions versus serum condition. Materials and Methods: In this experimental study, we investigated bioinformatics analysis of the shotgun proteomics data for cells grown under 2i, R2i, and serum culture conditions. The findings were validated by cell cycle analysis and gene expressions of the cells with flow cytometry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively. Results: Expressions of 163 proteins increased in 2i-grown cells and 181 proteins increased in R2i-grown cells versus serum, which were mostly involved in glycolysis signaling pathway, oxidation-reduction, metabolic processes, amino acid and lipid metabolism. Flow cytometry analysis showed significant accumulation of cells in S phase for 2i (70%) and R2i (61%) grown cells. Conclusion: This study showed that under 2i and R2i conditions, glycolysis was highlighted for energy production and used to maintain high levels of glycolytic intermediates to support cell proliferation. Cells grown under 2i and R2i conditions showed rapid cell cycling in comparison with the cells grown under serum conditions.
Keywords :
Cell Cycle , Glycolysis , Metabolism Process , Mouse Embryonic Stem Cells
Journal title :
Cell Journal(Yakhteh)
Serial Year :
2018
Journal title :
Cell Journal(Yakhteh)
Record number :
2456540
Link To Document :
بازگشت