Title of article :
Maximal Subgroups of the Semigroup B_X (D) Defined by Semilattices of the Class Ʃ_3^(X, 8)
Author/Authors :
Tavdgiridze ، Giuli - Shota Rustaveli Batumi State University
Pages :
21
From page :
69
To page :
89
Abstract :
By the symbol ∑ sub 3 /sub sup (X, 8) /sup we denote the class of all X- semilattices of unions whose every element is isomorphic to an X-semilattice of form D = {Z sub 7 /sub , Z sub 6 /sub , Z sub 5 /sub , Z sub 4 /sub , Z sub 3 /sub , Z sub 2 /sub , Z sub 1 /sub , D}, where Z sub 7 /sub ⊂Z sub 5 /sub ⊂Z sub 3 /sub ⊂Z sub 1 /sub ⊂Ď,Z sub 7 /sub ⊂Z sub 6 /sub ⊂Z sub 4 /sub ⊂Z sub 2 /sub ⊂Ď, Z sub 7 /sub ⊂Z sub 5 /sub ⊂Z sub 4 /sub ⊂Z sub 1 /sub ⊂Ď,Z sub 7 /sub ⊂Z sub 5 /sub ⊂Z sub 4 /sub ⊂Z sub 2 /sub ⊂Ď,Z sub 7 /sub ⊂Z sub 6 /sub ⊂Z sub 4 /sub ⊂Z sub 1 /sub ⊂ĎZ sub i /sub \Z sub j /sub ≠Ø, (I,j)∈{(5,6),(6,5),(3,6),(6,3),(4,3),(3,4),(2,3),(3,2),(2,1),(1,2)}. In the given paper we give a full description maximal subgroups of the complete semigroups of binary elations defined by semilattices of the class ∑ sub 3 /sub sup (X, 8) /sup
Keywords :
Semilattice , Semigroup , Binary Relation , Idempotent Element
Journal title :
General Mathematics Notes
Serial Year :
2015
Journal title :
General Mathematics Notes
Record number :
2457724
Link To Document :
بازگشت